Juvenile Chinook Salmon Oncorhynchus Tshawytscha Life History Diversity And Growth Variability In A Large Freshwater Tidal Estuary PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Juvenile Chinook Salmon Oncorhynchus Tshawytscha Life History Diversity And Growth Variability In A Large Freshwater Tidal Estuary PDF full book. Access full book title Juvenile Chinook Salmon Oncorhynchus Tshawytscha Life History Diversity And Growth Variability In A Large Freshwater Tidal Estuary.

Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) Life History Diversity and Growth Variability in a Large Freshwater Tidal Estuary

Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) Life History Diversity and Growth Variability in a Large Freshwater Tidal Estuary
Author: Pascale A. L. Goertler
Publisher:
Total Pages: 91
Release: 2014
Genre:
ISBN:

Download Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) Life History Diversity and Growth Variability in a Large Freshwater Tidal Estuary Book in PDF, ePub and Kindle

For many fish and wildlife species, a mosaic of available habitats is required to complete their life cycle, and is considered necessary to ensure population stability and persistence. Particularly for young animals, nursery habitats provide opportunities for rapid growth and high survival during this vulnerable life stage. My thesis focuses on juvenile Chinook salmon (Oncorhynchus tshawytscha) and their use of estuarine wetlands as nursery habitat. Estuaries are highly productive systems representing a mosaic of habitats connecting rivers to the sea, and freshwater tidal estuaries provide abundant prey communities, shade, refuge from predation and transitional habitat for the osmoregulatory changes experienced by anadromous fishes. I will be discussing the freshwater tidal wetland habitat use of juvenile Chinook salmon in the Columbia River estuary, which are listed under the Endangered Species Act. I used otolith microstructural growth estimates and prey consumption to measure rearing habitat quality. This sampling effort was designed to target as much genetic diversity as possible, and individual assignment to regional stocks of origin was used to describe the diversity of juvenile Chinook salmon groups inhabiting the estuary. Diversity is important for resilience, and in salmon biocomplexity within fish stocks has been shown to ensure collective productivity despite environmental change. However much of the research which links diversity to resilience in salmon has focused on the adult portion of the life cycle and many resource management policies oversimplify juvenile life history diversity. When this oversimplification of juvenile life history diversity is applied to salmon conservation it may be ignoring critical indicators for stability. Therefore in addition to genetic diversity I also explore methods for better defining juvenile life history diversity and its application in salmon management, such as permitting requirements, habitat restoration, hydropower practices and hatchery management. This study addresses how juvenile salmon growth changes among a range of wetland habitats in the freshwater tidal portion of the Columbia River estuary and how growth variation describes and contributes to life history diversity. To do this, I incorporated otolith microstructure, individual assignment to regional stock of origin, GIS habitat mapping and diet composition, in three habitats (mainstem river, tributary confluence and backwater channel) along ~130 km of the upper estuary. For my first chapter I employed a generalized linear model (GLM) to test three hypotheses: juvenile Chinook growth was best explained by (1) temporal factors, (2) habitat use, or (3) demographic characteristics, such as stock of origin or the timing of seaward migration. I found that variation in growth was best explained by habitat type and an interaction between fork length and month of capture. Juvenile Chinook salmon grew faster in backwater channel habitat and later in the summer. I also found that mid-summer and late summer/fall subyearlings had the highest estuarine growth rates. When compared to other studies in the basin these juvenile Chinook grew on average 0.23, 0.11-0.43 mm/d in the freshwater tidal estuary, similar to estimates in the brackish estuary, but ~4 times slower than those in the plume and upstream reservoirs. However, survival studies from the system elucidated a possible tradeoff between growth and survival in the Columbia River basin. These findings present a unique example of the complexity in understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries. In my second chapter, I used otolith microstructure and growth trends produced in a dynamic factor analysis (DFA, a multivariate time series method only recently being used in fisheries) to identify the life history variation in juvenile Chinook salmon caught in the Columbia River estuary over a two-year period (2010-2012). I used genetic assignment to stock of origin and capture location and date with growth trajectories, as a proxy for habitat transitions, to reconstruct life history types. DFA estimated four to five growth trends were present in juvenile Chinook salmon caught in the Columbia River estuary, diversity currently being simplified in many management practices. Regional stocks and habitats did not display divergent growth histories, but the marked hatchery fish did ordinate very similarly in the trend loadings from the DFA analysis, suggesting that hatchery fish may not experience the same breadth of growth variability as wild fish. I was not able to quantify juvenile life history diversity, and juvenile Chinook life history diversity remains difficult to catalog and integrate into species conservation and habitat restoration for resource management. However, by expanding our understanding of how juvenile Chinook salmon experience their freshwater rearing environment we improve our capacity to conserve and manage salmon populations. The findings from my thesis provide the necessary information for a restoration framework to link habitat features with salmon management goals, such as juvenile growth, wild and genetic origin and life history diversity.


Feeding Ecology and Growth of Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) During Early Marine Residence

Feeding Ecology and Growth of Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) During Early Marine Residence
Author: Marisa Norma Chantal Litz
Publisher:
Total Pages: 203
Release: 2017
Genre: Chinook salmon
ISBN:

Download Feeding Ecology and Growth of Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) During Early Marine Residence Book in PDF, ePub and Kindle

The early marine phase following freshwater emigration has been identified as a critical period in salmonid (Oncorhynchus spp.) life history, characterized by high but variable mortality. Consistent with the “growth-mortality” and “bigger-is-better” hypotheses, at least some of the mortality during the critical period appears to be size-dependent – with smaller or slower growing individuals less likely to survive than larger, faster growing conspecifics. Size and growth are flexible morphological traits that vary with prey availability, yet there is incomplete information on the temporal and spatial match/mismatch between juvenile salmonids and their marine prey in the Northern California Current Ecosystem. This work addressed a gap in the understanding of seasonal variability in prey community composition, abundance, and quality during early marine residence. Three studies were conducted using a population of subyearling (age-0) Chinook salmon (O. tshawytscha) from the upper Columbia River in order to evaluate the effects of prey on salmon growth, biochemistry, and performance. The first was a laboratory study that tested for growth rate and swimming speed differences in salmon reared on three treatment diets followed by three fasting treatments to assess the effects of variability in summer diet quality and winter diet quantity. Significant differences in growth were detected among fasting treatments but not diet treatments. Also, larger salmon with more storage lipids swam faster than smaller leaner fish following fasting, indirectly supporting the notion that growth during the critical period provides a carryover benefit important for overwinter survival. Salmon fatty acids and bulk stable isotopes of carbon and nitrogen were measured throughout the experiment to provide estimates of turnover and incorporation rates. The next study was a longitudinal field study that measured variation in salmon size and prey field community throughout the early ocean period (May – September) over two years of high marine survival (2011 and 2012) to better understand the relationship between prey community composition and salmon growth. Maximum growth rates were associated with high biomass of northern anchovy (Engraulis mordax) which peaked in abundance at different times in each year. The final bioenergetics modeling study combined data from the laboratory and field studies to evaluate the relative importance of prey availability, prey energy density, and temperature on salmon growth. Variation in feeding rate was related most with growth rate variability and least with prey energy density. Throughout their range, subyearlings can grow at high rates in the ocean (>2% body weight per day) by consuming both invertebrate and marine fish prey. However, when marine fish prey are highly abundant they likely provide an energetic advantage over invertebrate prey by reducing overall foraging costs. Quantifying the abundance, size, diet, and distribution of juvenile salmonids relative to their prey field throughout early ocean residence will contribute to a better understanding of seasonal differences in trophic interactions that are associated with differences in annual growth and survival rates. Moreover, an integrated approach that combines sampling of prey with measurements of predator growth, diet, fatty acids, and stable isotopes provides a useful framework for assessing trophic dynamics and evaluating the effects of climate variability and change on predator and prey communities.


Suisun Marsh

Suisun Marsh
Author: Peter B. Moyle
Publisher: Univ of California Press
Total Pages: 252
Release: 2014-03-26
Genre: Nature
ISBN: 0520276086

Download Suisun Marsh Book in PDF, ePub and Kindle

One of California's most remarkable wetlands, Suisun Marsh is the largest tidal marsh on the West Coast and a major feature of the San Francisco Estuary. This productive and unique habitat supports endemic species, is a nursery for native fishes, and is a vital link for migratory waterfowl. The 6,000-year-old marsh has been affected by human activity, and humans will continue to have significant impacts on the marsh as the sea level rises and cultural values shift in the century ahead. This study includes in-depth information about the ecological and human history of Suisun Marsh, its abiotic and biotic characteristics, agents of ecological change, and alternative futures facing this ecosystem.


Connecting Tidal-fluvial Life Histories to Survival of McKenzie River Spring Chinook Salmon (Oncorhynchus Tshawytscha)

Connecting Tidal-fluvial Life Histories to Survival of McKenzie River Spring Chinook Salmon (Oncorhynchus Tshawytscha)
Author: Gordon W. Rose
Publisher:
Total Pages: 111
Release: 2015
Genre: Chinook salmon
ISBN:

Download Connecting Tidal-fluvial Life Histories to Survival of McKenzie River Spring Chinook Salmon (Oncorhynchus Tshawytscha) Book in PDF, ePub and Kindle

Chinook salmon returns to the Columbia River basin have declined due to impacts of a growing human population, despite significant mitigation expenditures. Consequently, fisheries managers have become focused on recovery and long-term viability of at-risk populations. A viable population depends, in part, on the connectivity and quality of diverse habitat types salmon require to complete their anadromous life-cycles. The tidal-fluvial Columbia River estuary is one link in this chain of habitats, but was largely over-looked as important Chinook salmon habitat until recently. Habitat restoration projects are underway in the tidal Columbia River estuary with the goal of increasing survival benefits to juvenile Chinook salmon. However, knowledge gaps remain about stock-specific use of tidal-fluvial habitat and tracking these restoration efforts is largely subjective. This study has sought to quantify the importance of tidal-fluvial habitat for a critical population of Chinook salmon, from the McKenzie River in the upper Willamette River Basin. Using otolith micro-chemistry profile analysis, juvenile net growth in the tidal-fluvial Columbia River was back-calculated for 92 natural-origin McKenzie River Chinook salmon across outmigration years 2005 and 2006. All otoliths were sampled from McKenzie River adult salmon to draw inferences about the juvenile life histories of surviving spawners. Mean ± SD net growth in the tidal fluvial estuary for all years was 5.48 ± 5.81 mm for subyearlings and 7.43 ± 8.32mm for yearlings. Differences in mean net growth by juvenile life-history type were not significant despite a prevailing assumption that subyearlings rear longer in estuary habitat than yearlings. Emigration sizes and net-growth estimates were significantly greater for subyearlings in outmigration year 2005 than 2006; there was only suggestive evidence emigration sizes were greater for yearlings in outmigration year 2005 than 2006, and net-growth estimates were similar between years. Sixteen percent (15 of 92) of McKenzie Chinook salmon grew between 10 and 43 mm over approximately 25-100 days in the tidal-fluvial Columbia River. Extended rearing in tidal-fluvial habitat provided an alternate life-history pathway for some yearling (12), fingerling (one), and fry (two) migrants. Subyearlings with intermediate-rearing or migratory life history pathways had greater net growth in tidal-fluvial habitat during 2005 than 2006, and in 2005 environmental conditions were unfavorable to overall salmon productivity. Fixed effects linear regression models suggest tidal-fluvial habitat supports McKenzie Chinook salmon life-history diversity, growth, and size, and therefore likely contributes to population resilience.


Species Profiles

Species Profiles
Author: Mark A. Allen
Publisher:
Total Pages: 40
Release: 1986
Genre: Chinook salmon
ISBN:

Download Species Profiles Book in PDF, ePub and Kindle


Life Histories of Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) in the Columbia River Estuary as Inferred from Scale and Otolith Microchemistry

Life Histories of Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) in the Columbia River Estuary as Inferred from Scale and Otolith Microchemistry
Author: Lance A. Campbell
Publisher:
Total Pages: 210
Release: 2010
Genre: Chinook salmon
ISBN:

Download Life Histories of Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) in the Columbia River Estuary as Inferred from Scale and Otolith Microchemistry Book in PDF, ePub and Kindle

Despite evidence that juvenile Chinook salmon (Oncorhynchus tshawytscha) utilize North Pacific estuaries for growth and salinity acclimation, research in the Columbia River estuary has lead to opposing hypotheses about the estuary's importance as a salmon rearing environment. Many contemporary tagging studies indicate that salmon residency within the estuary is short (


The Effects of Wetland Loss and Restoration on the Foraging Performance and Growth Potential of Juvenile Chinook Salmon in Pacific Northwest Estuaries

The Effects of Wetland Loss and Restoration on the Foraging Performance and Growth Potential of Juvenile Chinook Salmon in Pacific Northwest Estuaries
Author: Aaron David
Publisher:
Total Pages: 105
Release: 2014
Genre: Chinook salmon
ISBN:

Download The Effects of Wetland Loss and Restoration on the Foraging Performance and Growth Potential of Juvenile Chinook Salmon in Pacific Northwest Estuaries Book in PDF, ePub and Kindle

During the transition of juveniles from fresh water to estuarine and coastal environments, the survival of Pacific salmon (Oncorhynchus spp.) can be strongly size-selective and cohort abundance is partly determined. Because the quantity and quality of food consumed influence juvenile salmon growth, high rates of prey and energy acquisition during estuarine residence are important for survival. Human activities may have affected the foraging performance of juvenile salmon in estuaries by reducing the area of wetlands and by altering the abundance of conspecifics. To improve our understanding of the effects of wetland loss and conspecific density on juvenile salmon foraging performance and diet composition in estuaries, I assembled Chinook salmon (O. tshawytscha) diet and density data from nine U.S. Pacific Northwest estuaries across a gradient of wetland loss. We evaluated the influence of wetland loss and conspecific density on juvenile Chinook salmon instantaneous ration and energy ration, two measures of foraging performance, and whether the effect of density varied among estuaries with different levels of wetland loss. We also assessed the influence of wetland loss and three other covariates on salmon diet composition. There was no evidence of a direct effect of wetland loss on juvenile salmon foraging performance, but wetland loss mediated the effect of conspecific density on salmon foraging performance and altered salmon diet composition. These results suggest that habitat loss can interact with conspecific density to constrain the foraging performance of juvenile fishes, and ultimately their growth, during a life-history stage when survival is positively correlated with growth and size. I also evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook salmon. Several studies have assessed the value of restored tidal wetlands for juvenile salmon, but few have used integrative measures of salmon physiological performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, where recent dike removals restored tidal flow to 364 ha of marsh, the largest tidal marsh restoration in the Pacific Northwest. To compare Chinook salmon foraging performance and growth potential in two restored and two reference marshes over three years post-restoration, we sampled fish assemblages, water temperatures, and juvenile Chinook salmon diet composition and consumption rates, and used these data as inputs to a bioenergetics model. We found that juvenile Chinook salmon foraging performance and growth potential were similar between the restored and reference marshes. However, densities of Chinook salmon were significantly lower in the restored marshes and growth potential was more variable in the restored marshes due to their more variable and warmer (2?? C) water temperatures compared to the reference marshes. These results indicate that some but not all ecosystem attributes that are important to juvenile salmon rapidly recover following large-scale tidal marsh restoration.


Fine-scale Structure in the Ecology of Juvenile Chinook Salmon at Sea

Fine-scale Structure in the Ecology of Juvenile Chinook Salmon at Sea
Author: William Duguid
Publisher:
Total Pages:
Release: 2020
Genre:
ISBN:

Download Fine-scale Structure in the Ecology of Juvenile Chinook Salmon at Sea Book in PDF, ePub and Kindle

Fisheries oceanography often aims to link large scale atmospheric and oceanic processes to variability and trends in the productivity of economically and ecologically valuable fish species. Declines in productivity of multiple species of Pacific Salmon (genus Oncorhynchus) in recent decades have spurred the search for a 'smoking gun;' an explanation that could explain trends in productivity across populations, regions and species. Despite extensive investment of research effort and funding, such an explanation remains elusive. The lack of a unifying explanation for declining productivity of Pacific Salmon may be due to the spatial and temporal complexity of their interactions with the marine environment. This complexity has historically been understudied, in part due to logistical limitations of research on Pacific Salmon at sea. This dissertation reports the results of a detailed study of how juvenile Chinook Salmon O. tshawytscha interact with marine habitats during their first summer and fall at sea. I first developed and validated a novel, hook and line-based method of sampling juvenile Chinook Salmon (microtrolling). I then reviewed and empirically compared methods (insulin like growth factor-1 concentration, RNA to DNA ratio, and scale circulus spacing) for indexing growth rate of juvenile salmon sampled in the ocean, a variable which is hypothesized to be related to subsequent survival. I integrated microtrolling with small vessel oceanography to relate distribution, diet, size and growth of juvenile Chinook Salmon to local scale variation in water column properties (stratification) and zooplankton community composition and abundance for five sites in the Southern Gulf Islands of the Salish Sea during a single summer (2015). While both stratification and zooplankton abundance and composition varied between sites, I failed to find support for the hypothesis that juvenile salmon distribution and growth was positively related to water column stratification at fine spatial scales. Juvenile Chinook Salmon were larger and faster growing where juvenile Pacific Herring Clupea pallasii were important in their diets, suggesting that Pacific Herring may play an important role in structuring the ecology of juvenile Chinook Salmon at sea. I built on 2015 results to conduct a detailed case study of juvenile Chinook Salmon ecology at two sites in the Southern Gulf Islands: Sansum Narrows and Maple Bay. Juvenile Chinook Salmon were consistently larger, more piscivorous, and faster growing at Sansum Narrows than Maple Bay across two years (2015 and 2016) despite lower zooplankton abundance at Sansum Narrows. Hydroacoustic surveys in September 2017 confirmed prior qualitative observations of elevated occurrence of forage fish schools (likely age-0 Pacific Herring) at Sansum Narrows, and a novel, mobile acoustic tag tracking survey suggested that fish tagged at Sansum Narrows may co-locate with juvenile Pacific Herring over the tidal cycle. By relating a scale circulus spacing-based growth index to reconstructed size intervals I found that juvenile Chinook Salmon at Sansum Narrows had been faster growing that those at Maple Bay before the transition to piscivory, and perhaps before migration to the ocean. These results suggest that intrinsic growth potential, or growth conditions during freshwater rearing or the transition to marine residence, interact with fine-scale structure in marine habitats to regulate growth potential of juvenile Chinook Salmon at sea. These factors also likely interact with the basin and interannual scale processes that have received extensive study as regulators of marine survival of juvenile Pacific salmon. These complex interactions should be taken into account when designing or interpreting studies to determine factors limiting productivity of Pacific Salmon populations.