Interpretable Machine Learning And Sparse Coding For Computer Vision PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Interpretable Machine Learning And Sparse Coding For Computer Vision PDF full book. Access full book title Interpretable Machine Learning And Sparse Coding For Computer Vision.

Interpretable Machine Learning and Sparse Coding for Computer Vision

Interpretable Machine Learning and Sparse Coding for Computer Vision
Author:
Publisher:
Total Pages: 178
Release: 2014
Genre: Compressed sensing (Telecommunication)
ISBN:

Download Interpretable Machine Learning and Sparse Coding for Computer Vision Book in PDF, ePub and Kindle

Machine learning offers many powerful tools for prediction. One of these tools, the binary classifier, is often considered a black box. Although its predictions may be accurate, we might never know why the classifier made a particular prediction. In the first half of this dissertation, I review the state of the art of interpretable methods (methods for explaining why); after noting where the existing methods fall short, I propose a new method for a particular type of black box called additive networks. I offer a proof of trustworthiness for this new method (meaning a proof that my method does not "make up" the logic of the black box when generating an explanation), and verify that its explanations are sound empirically. Sparse coding is part of a family of methods that are believed, by many researchers, to not be black boxes. In the second half of this dissertation, I review sparse coding and its application to the binary classifier. Despite the fact that the goal of sparse coding is to reconstruct data (an entirely different goal than classification), many researchers note that it improves classification accuracy. I investigate this phenomenon, challenging a common assumption in the literature. I show empirically that sparse reconstruction is not necessarily the right intermediate goal, when our ultimate goal is classification. Along the way, I introduce a new sparse coding algorithm that outperforms competing, state-of-the-art algorithms for a variety of important tasks.


Sparse Coding And Its Applications In Computer Vision

Sparse Coding And Its Applications In Computer Vision
Author: Zhaowen Wang
Publisher: World Scientific
Total Pages: 239
Release: 2015-10-28
Genre: Computers
ISBN: 9814725064

Download Sparse Coding And Its Applications In Computer Vision Book in PDF, ePub and Kindle

This book provides a broader introduction to the theories and applications of sparse coding techniques in computer vision research. It introduces sparse coding in the context of representation learning, illustrates the fundamental concepts, and summarizes the most active research directions. A variety of applications of sparse coding are discussed, ranging from low-level image processing tasks such as super-resolution and de-blurring to high-level semantic understanding tasks such as image recognition, clustering and fusion.The book is suitable to be used as an introductory overview to this field, with its theoretical part being both easy and precious enough for quick understanding. It is also of great value to experienced researchers as it offers new perspective to the underlying mechanism of sparse coding, and points out potential future directions for different applications.


Interpretable Machine Learning

Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
Total Pages: 320
Release: 2020
Genre: Artificial intelligence
ISBN: 0244768528

Download Interpretable Machine Learning Book in PDF, ePub and Kindle

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.


Explainable and Interpretable Models in Computer Vision and Machine Learning

Explainable and Interpretable Models in Computer Vision and Machine Learning
Author: Hugo Jair Escalante
Publisher: Springer
Total Pages: 299
Release: 2018-11-29
Genre: Computers
ISBN: 3319981315

Download Explainable and Interpretable Models in Computer Vision and Machine Learning Book in PDF, ePub and Kindle

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations


Advanced Methods and Deep Learning in Computer Vision

Advanced Methods and Deep Learning in Computer Vision
Author: E. R. Davies
Publisher: Academic Press
Total Pages: 584
Release: 2021-11-09
Genre: Computers
ISBN: 0128221496

Download Advanced Methods and Deep Learning in Computer Vision Book in PDF, ePub and Kindle

Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field Illustrates principles with modern, real-world applications Suitable for self-learning or as a text for graduate courses


Image Understanding using Sparse Representations

Image Understanding using Sparse Representations
Author: Jayaraman J. Thiagarajan
Publisher: Springer Nature
Total Pages: 115
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031022505

Download Image Understanding using Sparse Representations Book in PDF, ePub and Kindle

Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blind source separation, super-resolution, and classification. The primary goal of this book is to present the theory and algorithmic considerations in using sparse models for image understanding and computer vision applications. To this end, algorithms for obtaining sparse representations and their performance guarantees are discussed in the initial chapters. Furthermore, approaches for designing overcomplete, data-adapted dictionaries to model natural images are described. The development of theory behind dictionary learning involves exploring its connection to unsupervised clustering and analyzing its generalization characteristics using principles from statistical learning theory. An exciting application area that has benefited extensively from the theory of sparse representations is compressed sensing of image and video data. Theory and algorithms pertinent to measurement design, recovery, and model-based compressed sensing are presented. The paradigm of sparse models, when suitably integrated with powerful machine learning frameworks, can lead to advances in computer vision applications such as object recognition, clustering, segmentation, and activity recognition. Frameworks that enhance the performance of sparse models in such applications by imposing constraints based on the prior discriminatory information and the underlying geometrical structure, and kernelizing the sparse coding and dictionary learning methods are presented. In addition to presenting theoretical fundamentals in sparse learning, this book provides a platform for interested readers to explore the vastly growing application domains of sparse representations.


Applied Computer Vision and Soft Computing with Interpretable AI

Applied Computer Vision and Soft Computing with Interpretable AI
Author: Swati V. Shinde
Publisher: CRC Press
Total Pages: 442
Release: 2023-10-12
Genre: Computers
ISBN: 100095255X

Download Applied Computer Vision and Soft Computing with Interpretable AI Book in PDF, ePub and Kindle

This reference text presents the knowledge base of computer vision and soft computing techniques with their applications for sustainable developments. Features: ∙ Covers a variety of deep learning architectures useful for computer vision tasks. ∙ Demonstrates the use of different soft computing techniques and their applications for different computer vision tasks. ∙ Highlights the unified strengths of hybrid techniques based on deep learning and soft computing taken together that give the interpretable, adaptive, and optimized solution to a given problem. ∙ Addresses the different issues and further research opportunities in computer vision and soft computing. ∙ Describes all the concepts with practical examples and case studies with appropriate performance measures that validate the applicability of the respective technique to a certain domain. ∙ Considers recent real word problems and the prospective solutions to these problems. This book will be useful to researchers, students, faculty, and industry personnel who are eager to explore the power of deep learning and soft computing for different computer vision tasks.


Sparse and Redundant Representations

Sparse and Redundant Representations
Author: Michael Elad
Publisher: Springer Science & Business Media
Total Pages: 376
Release: 2010-08-12
Genre: Mathematics
ISBN: 1441970118

Download Sparse and Redundant Representations Book in PDF, ePub and Kindle

A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.


Low-Power Computer Vision

Low-Power Computer Vision
Author: George K. Thiruvathukal
Publisher: CRC Press
Total Pages: 395
Release: 2022-02-22
Genre: Computers
ISBN: 1000540960

Download Low-Power Computer Vision Book in PDF, ePub and Kindle

Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.


Mastering Computer Vision with TensorFlow 2.x

Mastering Computer Vision with TensorFlow 2.x
Author: Krishnendu Kar
Publisher: Packt Publishing Ltd
Total Pages: 419
Release: 2020-05-15
Genre: Computers
ISBN: 1838826939

Download Mastering Computer Vision with TensorFlow 2.x Book in PDF, ePub and Kindle

Apply neural network architectures to build state-of-the-art computer vision applications using the Python programming language Key FeaturesGain a fundamental understanding of advanced computer vision and neural network models in use todayCover tasks such as low-level vision, image classification, and object detectionDevelop deep learning models on cloud platforms and optimize them using TensorFlow Lite and the OpenVINO toolkitBook Description Computer vision allows machines to gain human-level understanding to visualize, process, and analyze images and videos. This book focuses on using TensorFlow to help you learn advanced computer vision tasks such as image acquisition, processing, and analysis. You'll start with the key principles of computer vision and deep learning to build a solid foundation, before covering neural network architectures and understanding how they work rather than using them as a black box. Next, you'll explore architectures such as VGG, ResNet, Inception, R-CNN, SSD, YOLO, and MobileNet. As you advance, you'll learn to use visual search methods using transfer learning. You'll also cover advanced computer vision concepts such as semantic segmentation, image inpainting with GAN's, object tracking, video segmentation, and action recognition. Later, the book focuses on how machine learning and deep learning concepts can be used to perform tasks such as edge detection and face recognition. You'll then discover how to develop powerful neural network models on your PC and on various cloud platforms. Finally, you'll learn to perform model optimization methods to deploy models on edge devices for real-time inference. By the end of this book, you'll have a solid understanding of computer vision and be able to confidently develop models to automate tasks. What you will learnExplore methods of feature extraction and image retrieval and visualize different layers of the neural network modelUse TensorFlow for various visual search methods for real-world scenariosBuild neural networks or adjust parameters to optimize the performance of modelsUnderstand TensorFlow DeepLab to perform semantic segmentation on images and DCGAN for image inpaintingEvaluate your model and optimize and integrate it into your application to operate at scaleGet up to speed with techniques for performing manual and automated image annotationWho this book is for This book is for computer vision professionals, image processing professionals, machine learning engineers and AI developers who have some knowledge of machine learning and deep learning and want to build expert-level computer vision applications. In addition to familiarity with TensorFlow, Python knowledge will be required to get started with this book.