In Memory Computing Hardware Accelerators For Data Intensive Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download In Memory Computing Hardware Accelerators For Data Intensive Applications PDF full book. Access full book title In Memory Computing Hardware Accelerators For Data Intensive Applications.

In-Memory Computing Hardware Accelerators for Data-Intensive Applications

In-Memory Computing Hardware Accelerators for Data-Intensive Applications
Author: Baker Mohammad
Publisher: Springer Nature
Total Pages: 145
Release: 2023-10-27
Genre: Technology & Engineering
ISBN: 303134233X

Download In-Memory Computing Hardware Accelerators for Data-Intensive Applications Book in PDF, ePub and Kindle

This book describes the state-of-the-art of technology and research on In-Memory Computing Hardware Accelerators for Data-Intensive Applications. The authors discuss how processing-centric computing has become insufficient to meet target requirements and how Memory-centric computing may be better suited for the needs of current applications. This reveals for readers how current and emerging memory technologies are causing a shift in the computing paradigm. The authors do deep-dive discussions on volatile and non-volatile memory technologies, covering their basic memory cell structures, operations, different computational memory designs and the challenges associated with them. Specific case studies and potential applications are provided along with their current status and commercial availability in the market.


Enabling Non-Volatile Memory for Data-intensive Applications

Enabling Non-Volatile Memory for Data-intensive Applications
Author: Xiao Liu
Publisher:
Total Pages: 163
Release: 2021
Genre:
ISBN:

Download Enabling Non-Volatile Memory for Data-intensive Applications Book in PDF, ePub and Kindle

The emerging Non-Volatile Memory (NVM) technologies are reforming the computer architecture. NVM holds advantages includes a byte-addressable interface, low latency, high capacity, and in-memory computing capability. However, data-intensive applications today demand compound features rather than just better performance. For instance, big data applications would require high availability and reliability. The neural network applications require scalability and power efficiency. Despite all the advantages of NVM, simply attaching the NVM to the memory hierarchy are unable to meet these demands. The decoupled reliability schemes among NVM and other devices fail to provide sufficient reliability. The vulnerability against overheating and hardware underutilization limit the performance and scalability of the in-memory computing NVM.Using the NVM for the data-intensive application requires redesign and customization. In this thesis, we focus on discussing the architecture designs that enable NVM for data-intensive applications. Our study includes two major types of data-intensive applications--big data applications and neural network applications. We first conduct a characteristic study against the persistent memory applications. Persistent memory implements over the NVM-based main memory and guarantees crash consistency. We explore the performance interaction across applications, persistent memory system software, and hardware components. Based on our characterization results, we provide a set of implications and recommendations for optimizing persistent memory designs. Second, we propose Binary Star for the generic data-intensive applications, which coordinates the reliability schemes and consistent cache writeback between 3D-stacked DRAM last-level cache and NVM main memory to maintain the reliability of the memory hierarchy. Binary Star significantly reduces the performance and storage overhead of consistent cache writeback by coordinating it with NVM wear leveling. For neural network applications, our first design explores the thermal effect over one representative NVM--resistive memory (RRAM). We find heat-induced interference decreases the computational accuracy in the RRAM-based neural network accelerator. We propose HR3AM, a heat resilience design, which improves accuracy and optimizes the thermal distribution. Results show that HR3AM improves classification accuracy and decreases both the maximum and average chip temperatures. Lastly, we present Mirage to improve parallelism and flexibility for pipeline-enabled RRAM-based accelerators. Mirage is a hardware/software co-design that addresses the data dependencies and inflexibility issues of existing accelerators. Our evaluation shows that Mirage achieves low inference latency and high throughput compared to state-of-the-art RRAM-based accelerators.


In-/Near-Memory Computing

In-/Near-Memory Computing
Author: Daichi Fujiki
Publisher: Springer Nature
Total Pages: 124
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031017722

Download In-/Near-Memory Computing Book in PDF, ePub and Kindle

This book provides a structured introduction of the key concepts and techniques that enable in-/near-memory computing. For decades, processing-in-memory or near-memory computing has been attracting growing interest due to its potential to break the memory wall. Near-memory computing moves compute logic near the memory, and thereby reduces data movement. Recent work has also shown that certain memories can morph themselves into compute units by exploiting the physical properties of the memory cells, enabling in-situ computing in the memory array. While in- and near-memory computing can circumvent overheads related to data movement, it comes at the cost of restricted flexibility of data representation and computation, design challenges of compute capable memories, and difficulty in system and software integration. Therefore, wide deployment of in-/near-memory computing cannot be accomplished without techniques that enable efficient mapping of data-intensive applications to such devices, without sacrificing accuracy or increasing hardware costs excessively. This book describes various memory substrates amenable to in- and near-memory computing, architectural approaches for designing efficient and reliable computing devices, and opportunities for in-/near-memory acceleration of different classes of applications.


FPGA-BASED Hardware Accelerators

FPGA-BASED Hardware Accelerators
Author: Iouliia Skliarova
Publisher: Springer
Total Pages: 245
Release: 2019-05-30
Genre: Technology & Engineering
ISBN: 3030207218

Download FPGA-BASED Hardware Accelerators Book in PDF, ePub and Kindle

This book suggests and describes a number of fast parallel circuits for data/vector processing using FPGA-based hardware accelerators. Three primary areas are covered: searching, sorting, and counting in combinational and iterative networks. These include the application of traditional structures that rely on comparators/swappers as well as alternative networks with a variety of core elements such as adders, logical gates, and look-up tables. The iterative technique discussed in the book enables the sequential reuse of relatively large combinational blocks that execute many parallel operations with small propagation delays. For each type of network discussed, the main focus is on the step-by-step development of the architectures proposed from initial concepts to synthesizable hardware description language specifications. Each type of network is taken through several stages, including modeling the desired functionality in software, the retrieval and automatic conversion of key functions, leading to specifications for optimized hardware modules. The resulting specifications are then synthesized, implemented, and tested in FPGAs using commercial design environments and prototyping boards. The methods proposed can be used in a range of data processing applications, including traditional sorting, the extraction of maximum and minimum subsets from large data sets, communication-time data processing, finding frequently occurring items in a set, and Hamming weight/distance counters/comparators. The book is intended to be a valuable support material for university and industrial engineering courses that involve FPGA-based circuit and system design.


Big Data Computing

Big Data Computing
Author: Rajendra Akerkar
Publisher: CRC Press
Total Pages: 562
Release: 2013-12-05
Genre: Business & Economics
ISBN: 1466578386

Download Big Data Computing Book in PDF, ePub and Kindle

Due to market forces and technological evolution, Big Data computing is developing at an increasing rate. A wide variety of novel approaches and tools have emerged to tackle the challenges of Big Data, creating both more opportunities and more challenges for students and professionals in the field of data computation and analysis. Presenting a mix


Computing with Memory for Energy-Efficient Robust Systems

Computing with Memory for Energy-Efficient Robust Systems
Author: Somnath Paul
Publisher: Springer Science & Business Media
Total Pages: 210
Release: 2013-09-07
Genre: Technology & Engineering
ISBN: 1461477980

Download Computing with Memory for Energy-Efficient Robust Systems Book in PDF, ePub and Kindle

This book analyzes energy and reliability as major challenges faced by designers of computing frameworks in the nanometer technology regime. The authors describe the existing solutions to address these challenges and then reveal a new reconfigurable computing platform, which leverages high-density nanoscale memory for both data storage and computation to maximize the energy-efficiency and reliability. The energy and reliability benefits of this new paradigm are illustrated and the design challenges are discussed. Various hardware and software aspects of this exciting computing paradigm are described, particularly with respect to hardware-software co-designed frameworks, where the hardware unit can be reconfigured to mimic diverse application behavior. Finally, the energy-efficiency of the paradigm described is compared with other, well-known reconfigurable computing platforms.


Computing Big-data Applications Near Flash

Computing Big-data Applications Near Flash
Author: Shuotao Xu
Publisher:
Total Pages: 183
Release: 2021
Genre:
ISBN:

Download Computing Big-data Applications Near Flash Book in PDF, ePub and Kindle

Current systems produce a large and growing amount of data, which is often referred to as Big Data. Providing valuable insights from this data requires new computing systems to store and process it efficiently. For a fast response time, Big Data typically relies on in-memory computing, which requires a cluster of machines with enough aggregate DRAM to accommodate the entire datasets for the duration of the computation. Big Data typically exceeds several terabytes, therefore this approach can incur significant overhead in power, space and equipment. If the amount of DRAM is not sufficient to hold the working-set of a query, the performance deteriorates catastrophically. Although NAND flash can provide high-bandwidth data access and has higher capacity density and lower cost per bit than DRAM, flash storage has dramatically different characteristics than DRAM, such as large access granularity and longer access latency. Therefore, there are many challenges for Big-Data applications to enable flash-centric computing and achieve performance comparable to that of in-memory computing. This thesis presents flash-centric hardware architectures that provide high processing throughput for data-intensive applications while hiding long flash access latency. Specifically we describe two novel flash-centric hardware accelerators, BlueCache and AQUOMAN. These systems lower the cost of two common data-center workloads, key-value cache and SQL analytics. We have built BlueCache and AQUOMAN using FPGAs and flash storage, and show that they can provide competitive performance of computing Big-Data applications with multi-terabyte datasets. BlueCache provides a 10-100X cheaper key-value cache than DRAM-based solution, and can outperform DRAM-based system when the latter has more than 7.4% misses for a read-intensive workloads. A desktop-class machine with single instance of 1TB AQUOMAN disk can achieve performance similar to that of a dual-socket general-purpose server with off-the-shelf SSDs. We believe BlueCache and AQUOMAN can bring down the cost of acquiring and operating high-performance computing systems for data-center-scale Big-Data applications dramatically.


Hardware Accelerators in Data Centers

Hardware Accelerators in Data Centers
Author: Christoforos Kachris
Publisher: Springer
Total Pages: 279
Release: 2018-08-21
Genre: Technology & Engineering
ISBN: 3319927922

Download Hardware Accelerators in Data Centers Book in PDF, ePub and Kindle

This book provides readers with an overview of the architectures, programming frameworks, and hardware accelerators for typical cloud computing applications in data centers. The authors present the most recent and promising solutions, using hardware accelerators to provide high throughput, reduced latency and higher energy efficiency compared to current servers based on commodity processors. Readers will benefit from state-of-the-art information regarding application requirements in contemporary data centers, computational complexity of typical tasks in cloud computing, and a programming framework for the efficient utilization of the hardware accelerators.


Your Genes, Your Choices

Your Genes, Your Choices
Author: Catherine Baker
Publisher:
Total Pages: 96
Release: 1996
Genre: DNA.
ISBN: 9780871686367

Download Your Genes, Your Choices Book in PDF, ePub and Kindle

Program discusses the Human Genome Project, the science behind it, and the ethical, legal and social issues raised by the project.


ReRAM-based Machine Learning

ReRAM-based Machine Learning
Author: Hao Yu
Publisher: IET
Total Pages: 260
Release: 2021-03-05
Genre: Computers
ISBN: 1839530812

Download ReRAM-based Machine Learning Book in PDF, ePub and Kindle

Serving as a bridge between researchers in the computing domain and computing hardware designers, this book presents ReRAM techniques for distributed computing using IMC accelerators, ReRAM-based IMC architectures for machine learning (ML) and data-intensive applications, and strategies to map ML designs onto hardware accelerators.