Human Inspired Dexterity In Robotic Manipulation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Human Inspired Dexterity In Robotic Manipulation PDF full book. Access full book title Human Inspired Dexterity In Robotic Manipulation.

Human Inspired Dexterity in Robotic Manipulation

Human Inspired Dexterity in Robotic Manipulation
Author: Tetsuyou Watanabe
Publisher: Academic Press
Total Pages: 218
Release: 2018-06-26
Genre: Technology & Engineering
ISBN: 0128133961

Download Human Inspired Dexterity in Robotic Manipulation Book in PDF, ePub and Kindle

Human Inspired Dexterity in Robotic Manipulation provides up-to-date research and information on how to imitate humans and realize robotic manipulation. Approaches from both software and hardware viewpoints are shown, with sections discussing, and highlighting, case studies that demonstrate how human manipulation techniques or skills can be transferred to robotic manipulation. From the hardware viewpoint, the book discusses important human hand structures that are key for robotic hand design and how they should be embedded for dexterous manipulation. This book is ideal for the research communities in robotics, mechatronics and automation. Investigates current research direction in robotic manipulation Shows how human manipulation techniques and skills can be transferred to robotic manipulation Identifies key human hand structures for robotic hand design and how they should be embedded in the robotic hand for dexterous manipulation


Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation

Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation
Author: Qiang Li
Publisher: Academic Press
Total Pages: 374
Release: 2022-04-02
Genre: Computers
ISBN: 0323904173

Download Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation Book in PDF, ePub and Kindle

Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects’ property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning. Provides a review of tactile perception and the latest advances in the use of robotic dexterous manipulation Presents the most detailed work on synthesizing intelligent tactile perception, skill learning and adaptive control Introduces recent work on human’s dexterous skill representation and learning and the adaptive control schema and its learning by imitation and exploration Reveals and illustrates how robots can improve dexterity by modern tactile sensing, interactive perception, learning and adaptive control approaches


Achieving Human-like Dexterity in Robotic Hands

Achieving Human-like Dexterity in Robotic Hands
Author: Taylor D. Niehues
Publisher:
Total Pages: 266
Release: 2017
Genre:
ISBN:

Download Achieving Human-like Dexterity in Robotic Hands Book in PDF, ePub and Kindle

The human hand's unique biomechanical structure and neuromuscular control combine to produce amazing dexterous capabilities in a way that is still not fully understood. The Anatomically Correct Testbed (ACT) hand is a robotic system that is designed as a physical simulation of the human hand, and can help us examine and potentially uncover the roles of biomechanics and neural control in achieving dexterity. In this dissertation, I utilize the ACT hand and other robotic systems to explore the underlying sources of human hand dexterity, with the goal of understanding the fundamental differences between robotic and human hands in terms of (i) mechanical joint/tendon structure and (ii) control strategies. To begin, I develop comprehensive mechanical models that describe the musculoskeletal and tendon mechanics of the fingers and thumb of the human hand. Then, I work to isolate the contributions of biomechanical structure and neuromuscular control toward human dexterity. I have developed and implemented control strategies for achieving fine object manipulation first with the robotic hand of a space humanoid, Robonaut 2, and then with the ACT hand. I examined the unique control challenges, including uncontrollable joints and the requirement of accurate internal models, that arise due to the human hand's complex musculotendon structure and the potential advantages offered by the human hand's design, such as passive joint coupling to facilitate grasp shape adaptation and force production capabilities that are ideally suited for common manipulation tasks. Finally, inspired by the neuromuscular control strategies of the human hand, I have developed a novel hierarchical control strategy for the ACT hand and experimentally demonstrated improved grasp stability and manipulation capabilities compared to conventional robotic control laws. Through an in-depth exploration of human hand biomechanics and neuromuscular control, theoretical control analysis of robotic and human hands, and experimental demonstration of fine object manipulation, this work uncovers crucial insights into the sources of human hand dexterity that have the potential to drive innovative design and control strategies and bring robotic and prosthetic hands closer to human levels of dexterity.


The Human Hand as an Inspiration for Robot Hand Development

The Human Hand as an Inspiration for Robot Hand Development
Author: Ravi Balasubramanian
Publisher: Springer
Total Pages: 573
Release: 2014-01-03
Genre: Technology & Engineering
ISBN: 3319030175

Download The Human Hand as an Inspiration for Robot Hand Development Book in PDF, ePub and Kindle

“The Human Hand as an Inspiration for Robot Hand Development” presents an edited collection of authoritative contributions in the area of robot hands. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities. The twenty-four chapters discuss the field of robotic grasping and manipulation viewed in light of the human hand’s capabilities and push the state-of-the-art in robot hand design and control. Topics discussed include human hand biomechanics, neural control, sensory feedback and perception, and robotic grasp and manipulation. This book will be useful for researchers from diverse areas such as robotics, biomechanics, neuroscience, and anthropologists.


Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation

Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation
Author: Qiang Li
Publisher: Elsevier
Total Pages: 372
Release: 2022-04-07
Genre: Computers
ISBN: 0323904459

Download Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation Book in PDF, ePub and Kindle

Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning. Provides a review of tactile perception and the latest advances in the use of robotic dexterous manipulation Presents the most detailed work on synthesizing intelligent tactile perception, skill learning and adaptive control Introduces recent work on human's dexterous skill representation and learning and the adaptive control schema and its learning by imitation and exploration Reveals and illustrates how robots can improve dexterity by modern tactile sensing, interactive perception, learning and adaptive control approaches


Advanced Bimanual Manipulation

Advanced Bimanual Manipulation
Author: Bruno Siciliano
Publisher: Springer
Total Pages: 284
Release: 2012-04-10
Genre: Technology & Engineering
ISBN: 3642290418

Download Advanced Bimanual Manipulation Book in PDF, ePub and Kindle

Dexterous and autonomous manipulation is a key technology for the personal and service robots of the future. Advances in Bimanual Manipulation edited by Bruno Siciliano provides the robotics community with the most noticeable results of the four-year European project DEXMART (DEXterous and autonomous dual-arm hand robotic manipulation with sMART sensory-motor skills: A bridge from natural to artificial cognition). The volume covers a host of highly important topics in the field, concerned with modelling and learning of human manipulation skills, algorithms for task planning, human-robot interaction, and grasping, as well as hardware design of dexterous anthropomorphic hands. The results described in this five-chapter collection are believed to pave the way towards the development of robotic systems endowed with dexterous and human-aware dual-arm/hand manipulation skills for objects, operating with a high degree of autonomy in unstructured real-world environments.


Cyber-Physical Systems and Control

Cyber-Physical Systems and Control
Author: Dmitry G. Arseniev
Publisher: Springer Nature
Total Pages: 778
Release: 2019-11-29
Genre: Science
ISBN: 3030349837

Download Cyber-Physical Systems and Control Book in PDF, ePub and Kindle

This book presents the proceedings of the International Conference on Cyber-Physical Systems and Control (CPS&C'2019), held in Peter the Great St. Petersburg Polytechnic University, which is celebrating its 120th anniversary in 2019. The CPS&C'2019 was dedicated to the 35th anniversary of the partnership between Peter the Great St. Petersburg Polytechnic University and Leibniz University of Hannover. Cyber-physical systems (CPSs) are a new generation of control systems and techniques that help promote prospective interdisciplinary research. A wide range of theories and methodologies are currently being investigated and developed in this area to tackle various complex and challenging problems. Accordingly, CPSs represent a scientific and engineering discipline that is set to make an impact on future systems of industrial and social scale that are characterized by the deep integration of real-time processing, sensing, and actuation into logical and physical heterogeneous domains. The CPS&C'2019 brought together researchers and practitioners from all over the world and to discuss cross-cutting fundamental scientific and engineering principles that underline the integration of cyber and physical elements across all application fields. The participants represented research institutions and universities from Austria, Belgium, Bulgaria, China, Finland, Germany, the Netherlands, Russia, Syria, Ukraine, the USA, and Vietnam. These proceedings include 75 papers arranged into five sections, namely keynote papers, fundamentals, applications, technologies, and education and social aspects.


Mechanics of Robotic Manipulation

Mechanics of Robotic Manipulation
Author: Matthew T. Mason
Publisher: MIT Press
Total Pages: 282
Release: 2001-06-08
Genre: Computers
ISBN: 9780262263740

Download Mechanics of Robotic Manipulation Book in PDF, ePub and Kindle

The science and engineering of robotic manipulation. "Manipulation" refers to a variety of physical changes made to the world around us. Mechanics of Robotic Manipulation addresses one form of robotic manipulation, moving objects, and the various processes involved—grasping, carrying, pushing, dropping, throwing, and so on. Unlike most books on the subject, it focuses on manipulation rather than manipulators. This attention to processes rather than devices allows a more fundamental approach, leading to results that apply to a broad range of devices, not just robotic arms. The book draws both on classical mechanics and on classical planning, which introduces the element of imperfect information. The book does not propose a specific solution to the problem of manipulation, but rather outlines a path of inquiry.


Mathematical Macroevolution in Diatom Research

Mathematical Macroevolution in Diatom Research
Author: Janice L. Pappas
Publisher: John Wiley & Sons
Total Pages: 587
Release: 2023-08-09
Genre: Science
ISBN: 1119750652

Download Mathematical Macroevolution in Diatom Research Book in PDF, ePub and Kindle

MATHEMATICAL MACROEVOLUTION IN DIATOM RESEARCH Buy this book to learn how to use mathematics in macroevolution research and apply mathematics to study complex biological problems. This book contains recent research in mathematical and analytical studies on diatoms. These studies reflect the complex and intricate nature of the problems being analyzed and the need to use mathematics as an aid in finding solutions. Diatoms are important components of marine food webs, the silica and carbon cycles, primary productivity, and carbon sequestration. Their uniqueness as glass-encased unicells and their presence throughout geologic history exemplifies the need to better understand such organisms. Explicating the role of diatoms in the biological world is no more urgent than their role as environmental and climate indicators, and as such, is aided by the mathematical studies in this book. The volume contains twelve original research papers as chapters. Macroevolutionary science topics covered are morphological analysis, morphospace analysis, adaptation, food web dynamics, origination-extinction and diversity, biogeography, life cycle dynamics, complexity, symmetry, and evolvability. Mathematics used in the chapters include stochastic and delay differential and partial differential equations, differential geometry, probability theory, ergodic theory, group theory, knot theory, statistical distributions, chaos theory, and combinatorics. Applied sciences used in the chapters include networks, machine learning, robotics, computer vision, image processing, pattern recognition, and dynamical systems. The volume covers a diverse range of mathematical treatments of topics in diatom research. Audience Diatom researchers, mathematical biologists, evolutionary and macroevolutionary biologists, paleontologists, paleobiologists, theoretical biologists, as well as researchers in applied mathematics, algorithm sciences, complex systems science, computational sciences, informatics, computer vision and image processing sciences, nanoscience, the biofuels industry, and applied engineering.


From Robot to Human Grasping Simulation

From Robot to Human Grasping Simulation
Author: Beatriz León
Publisher: Springer Science & Business Media
Total Pages: 263
Release: 2013-09-29
Genre: Technology & Engineering
ISBN: 3319018337

Download From Robot to Human Grasping Simulation Book in PDF, ePub and Kindle

The human hand and its dexterity in grasping and manipulating objects are some of the hallmarks of the human species. For years, anatomic and biomechanical studies have deepened the understanding of the human hand’s functioning and, in parallel, the robotics community has been working on the design of robotic hands capable of manipulating objects with a performance similar to that of the human hand. However, although many researchers have partially studied various aspects, to date there has been no comprehensive characterization of the human hand’s function for grasping and manipulation of everyday life objects. This monograph explores the hypothesis that the confluence of both scientific fields, the biomechanical study of the human hand and the analysis of robotic manipulation of objects, would greatly benefit and advance both disciplines through simulation. Therefore, in this book, the current knowledge of robotics and biomechanics guides the design and implementation of a simulation framework focused on manipulation interactions that allows the study of the grasp through simulation. As a result, a valuable framework for the study of the grasp, with relevant applications in several fields such as robotics, biomechanics, ergonomics, rehabilitation and medicine, has been made available to these communities.