High Resolution Methods For Incompressible And Low Speed Flows PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Resolution Methods For Incompressible And Low Speed Flows PDF full book. Access full book title High Resolution Methods For Incompressible And Low Speed Flows.

High-Resolution Methods for Incompressible and Low-Speed Flows

High-Resolution Methods for Incompressible and Low-Speed Flows
Author: D. Drikakis
Publisher: Springer Science & Business Media
Total Pages: 623
Release: 2005-08-02
Genre: Science
ISBN: 354026454X

Download High-Resolution Methods for Incompressible and Low-Speed Flows Book in PDF, ePub and Kindle

The study of incompressible ?ows is vital to many areas of science and te- nology. This includes most of the ?uid dynamics that one ?nds in everyday life from the ?ow of air in a room to most weather phenomena. Inundertakingthesimulationofincompressible?uid?ows,oneoftentakes many issues for granted. As these ?ows become more realistic, the problems encountered become more vexing from a computational point-of-view. These range from the benign to the profound. At once, one must contend with the basic character of incompressible ?ows where sound waves have been analytically removed from the ?ow. As a consequence vortical ?ows have been analytically “preconditioned,” but the ?ow has a certain non-physical character (sound waves of in?nite velocity). At low speeds the ?ow will be deterministic and ordered, i.e., laminar. Laminar ?ows are governed by a balance between the inertial and viscous forces in the ?ow that provides the stability. Flows are often characterized by a dimensionless number known as the Reynolds number, which is the ratio of inertial to viscous forces in a ?ow. Laminar ?ows correspond to smaller Reynolds numbers. Even though laminar ?ows are organized in an orderly manner, the ?ows may exhibit instabilities and bifurcation phenomena which may eventually lead to transition and turbulence. Numerical modelling of suchphenomenarequireshighaccuracyandmostimportantlytogaingreater insight into the relationship of the numerical methods with the ?ow physics.


Computational Fluid Dynamics 2006

Computational Fluid Dynamics 2006
Author: Herman Deconinck
Publisher: Springer
Total Pages: 916
Release: 2016-04-01
Genre:
ISBN: 9783662500903

Download Computational Fluid Dynamics 2006 Book in PDF, ePub and Kindle

ThisbookcontainstheproceedingsoftheFourthInternationalConference onComputationalFluidDynamics(ICCFD4), heldinGent, Belgiumfrom July10through16,2006. TheICCFDconferenceseriesisanoutcomeofthe mergeroftwoimportantstreamsofconferencesinComputationalFluid- namics: InternationalConferenceonNumericalMethodsinFluidDynamics, ICNMFD(since1996)andInternationalSymposiumonComputationalFluid Dynamics, ISCFD(since1985). In1998itwasdecidedtojointhetwoand ICCFD emerged as a biannual meeting, held in Kyoto in 2000, Sydney in 2002, Toronto in 2004 and Gent in 2006. Thus, the ICCFD series became theleadinginternationalconferenceseriesforscientists, mathematiciansand engineersinterestedinthecomputationof?uid?ow. The4theditionoftheconferencehasattracted200participantsfromall overtheworld;270abstractswerereceived, ofwhich135wereselectedina carefulpeerreviewprocessbytheexecutivecommittee(C. H. Bruneau, J. -J. Chattot, D. Kwak, N. Satofuka, D. W. Zingg, E. DickandH. Deconinck)for oralpresentationandafurther21forposterpresentation. Thepaperscontainedintheseproceedingsprovideanexcellentsnapshot of the ?eld of Computational Fluid Dynamics as of 2006. Invited keynote lecturesbyrenownedresearchersareincluded, withcontributionsinthe?eld ofdiscretizationschemes, high-endcomputingandengineeringchallenges, and two-phase?ow. Thesekeynotecontributionsarecomplementedby137regular papersonthemostdiverseaspectsofCFD: -Innovativealgorithmdevelopmentfor?owsimulation, optimisationandc- trol: higher-ordermethods(DG, FV, FEandRDmethods), iterativemethods andmultigrid, solutionadaptivemeshtechniques, errorestimationandc- trol, parallelalgorithms. -Innovativemodelingof?owphysicsintheareaofcompressibleandinc- pressible ?ows: hypersonic and reacting ?ows, two-phase ?ows, turbulence (LES, DES, DNS, andtransition), vortexdynamics, boundarylayerstability, multi-scalephysics, magnetohydrodynamics. Preface VII -advancedapplicationsusingtheabovementionedinnovativetechnology, and multidisciplinaryapplicationsincludingaero-elasticityandaero-acoustics. ThanksareduetooursponsorsNASA, theFWOResearchFoundation FlandersandtheEuropeanUnionthroughtheEUA4XMarieCurieproject. Inparticular, thegenerousgrantfromNASAisakeyfactorinthesuccessof thisconferenceseriesandthepublicationoftheseProceedings. Wealsowouldliketothankthesta?andPhDstudentsofthevonKarman InstituteandtheDepartmentof?ow, heatandcombustionmechanicsofthe University of Gent, for the help they provided toward the success of this conference. Sint-Genesius-Rode, Belgium HermanDeconinck vonKarmanInstituteforFluidDynamics Ghent, Belgium ErikDick GhentUniversity September2006 ConferenceChair Contents PartIInvitedSpeakers Twonewtechniquesforgeneratingexactlyincompressible approximatevelocities BernardoCockburn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 RoleofHigh-EndComputinginMeetingNASA'sScience andEngineeringChallenges RupakBiswas, EugeneL. Tu, WilliamR. VanDalsem. . . . . . . . . . . . . . . . 14 RecentAdvancesofMulti-phaseFlowComputationwiththe AdaptiveSoroban-gridCubicInterpolatedPropagation(CIP) Method TakashiYabe, YouichiOgata, KenjiTakizawa. . . . . . . . . . . . . . . . . . . . . . . 29 PartIISchemes OntheComputationofSteady-StateCompressibleFlows UsingaDGMethod HongLuo, JosephD. Baum, RainaldL]ohner. . . . . . . . . . . . . . . . . . . . . . . . 47 Space-TimeDiscontinuousGalerkinMethodforLarge AmplitudeNonlinearWaterWaves YanXu, JaapJ. W. vanderVegt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 AdiscontinuousGalerkinmethodwi


Virtual Node Methods for Incompressible Flow

Virtual Node Methods for Incompressible Flow
Author: Russell Edward Howes
Publisher:
Total Pages: 94
Release: 2014
Genre:
ISBN:

Download Virtual Node Methods for Incompressible Flow Book in PDF, ePub and Kindle

This thesis details two numerical methods for the solution of incompressible flow problems using the virtual node framework introduced in (Bedrossian, 2010). The first method is a novel discrete Hodge decomposition for velocity fields defined over irregular domains in two and three dimensions. This new decomposition leads to a sparse, 5-point stencil in 2D (7-point in 3D) at all nodes in the domain, even near the boundary. The corresponding linear system can be factored simply into a weighted product of the standard discrete divergence and gradient operators, is symmetric positive definite, and yields second order accurate pressures and first order velocities in the maximum norm (second order in the 1-norm). The second method is an extension of the work in (Assen & ccedil;o, 2013), which simulates the Stokes equations in two dimensions, to a method that models the Navier-Stokes equations in two and three spatial dimensions. The extension to three dimensions is partially accomplished by a new approach to discretizing the multiplier term corresponding to the system jump conditions. This method works either on domains with interfacial discontinuities in material quantities such as density and viscosity, or on irregularly shaped domains with Dirichlet, Neumann, or slip boundary conditions. This method leads to a discrete, KKT system solving for velocities and pressures simultaneously, and yields second order accurate velocities in both time and space, and first order pressures.


Flux-Corrected Transport

Flux-Corrected Transport
Author: Dmitri Kuzmin
Publisher: Springer Science & Business Media
Total Pages: 462
Release: 2012-04-02
Genre: Science
ISBN: 9400740379

Download Flux-Corrected Transport Book in PDF, ePub and Kindle

Addressing students and researchers as well as Computational Fluid Dynamics practitioners, this book is the most comprehensive review of high-resolution schemes based on the principle of Flux-Corrected Transport (FCT). The foreword by J.P. Boris and historical note by D.L. Book describe the development of the classical FCT methodology for convection-dominated transport problems, while the design philosophy behind modern FCT schemes is explained by S.T. Zalesak. The subsequent chapters present various improvements and generalizations proposed over the past three decades. In this new edition, recent results are integrated into existing chapters in order to describe significant advances since the publication of the first edition. Also, 3 new chapters were added in order to cover the following topics: algebraic flux correction for finite elements, iterative and linearized FCT schemes, TVD-like flux limiters, acceleration of explicit and implicit solvers, mesh adaptation, failsafe limiting for systems of conservation laws, flux-corrected interpolation (remapping), positivity preservation in RANS turbulence models, and the use of FCT as an implicit subgrid scale model for large eddy simulations.