High Q Aln Contour Mode Resonators With Unattached Voltage Actuated Electrodes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Q Aln Contour Mode Resonators With Unattached Voltage Actuated Electrodes PDF full book. Access full book title High Q Aln Contour Mode Resonators With Unattached Voltage Actuated Electrodes.

High-Q AlN Contour Mode Resonators with Unattached, Voltage-Actuated Electrodes

High-Q AlN Contour Mode Resonators with Unattached, Voltage-Actuated Electrodes
Author: Robert A. Schneider
Publisher:
Total Pages: 219
Release: 2015
Genre:
ISBN:

Download High-Q AlN Contour Mode Resonators with Unattached, Voltage-Actuated Electrodes Book in PDF, ePub and Kindle

High-Q narrowband filters at ultra-high frequencies hold promise for reducing noise and suppressing interferers in wireless transceivers, yet research efforts confront a daunting challenge. So far, no existing resonator technology can provide the simultaneous high-Q, high electromechanical coupling (k_{eff}^2), frequency tunability, low motional resistance (R_x), stopband rejection, self-switchability, frequency accuracy, and power handling desired to select individual channels or small portions of a band over a wide RF range. Indeed, each technology provides only a subset of the desired properties. Recently introduced "capacitive-piezoelectric" resonators, i.e., piezoelectric resonators with non-contacting transduction electrodes, known for achieving very good Q's, have recently emerged (in the early 2010's) as a contender among existing technologies to address the needs of RF narrowband selection. Several reports of such devices, made from aluminum nitride (AlN), have demonstrated improved Q's over attached electrode counterparts at frequencies up to 1.2 GHz, albeit with reduced transduction efficiency due to the added capacitive gaps. Fabrication challenges, while still allowing for a glimpse of the promise of this technology, have, until now, hindered attempts at more complex devices than just simple resonators with improved Q's. This thesis project demonstrates several key improvements to capacitive-piezo technology, which, taken together, further bolster its case for deployment for frequency control applications. First, new fabrication techniques improve yields, reliability, and performance. Second, design modifications now allow k_{eff}^2's on par even with attached-electrode contour-mode devices, while most importantly, achieving unprecedented Q-factors for AlN. Third, a new electrode-collapsed based resonance-quenching capability allows ON/OFF switching of resonators and filters, such as would be useful for a bank of parallel filters. Fourth, an integrated voltage-controlled gap-reduction-based frequency tuning mechanism permits wide frequency tuning of devices and thus much improved frequency accuracy. Gap actuation also allows for the decoupling of filters in the OFF state. And fifth, switchable and tunable capacitive-piezo narrow-band filters are demonstrated for the first time. This thesis is divided into eight parts. In the first chapter, context is provided to demonstrate the purpose of this work. RF channel selection is introduced and a survey of currently available technology is presented. The second chapter explains key operating principles for MEMS resonators so a novice reader can be better equipped to fully understand the design choices made in later chapters. Chapter 3, on high-performance capacitive-piezo disk resonators, introduces the fundamental device of this thesis, providing examples of performance and design optimization, experimental results, simulation methods, and modeling. Chapter 4 introduces capacitive-piezoelectric disk arrays as a method to increase the area and thereby reduce the motional resistance of the unit disk resonator. Chapter 5 discusses voltage controlled gap actuation of the capacitive piezoelectric transducer's top electrode, which enables voltage controlled frequency tuning and on/off switching. Chapter 6 takes a thorough look at the fabrication technology needed to make capacitive-piezo devices, including lessons learned on how to avoid certain pitfalls. Chapter 7, on filters, contains both theory and measurement results of filters. Chapter 8 concludes the thesis by summarizing the key achievements of Chapters 3 through 7, highlighting key areas needing further development, and discussing implications of this technology for the future.


Silicon Sensors and Actuators

Silicon Sensors and Actuators
Author: Benedetto Vigna
Publisher: Springer Nature
Total Pages: 988
Release: 2022-04-12
Genre: Technology & Engineering
ISBN: 3030801357

Download Silicon Sensors and Actuators Book in PDF, ePub and Kindle

This book thoroughly reviews the present knowledge on silicon micromechanical transducers and addresses emerging and future technology challenges. Readers will acquire a solid theoretical and practical background that will allow them to analyze the key performance aspects of devices, critically judge a fabrication process, and then conceive and design new ones for future applications. Envisioning a future complex versatile microsystem, the authors take inspiration from Richard Feynman’s visionary talk “There is Plenty of Room at the Bottom” to propose that the time has come to see silicon sensors as part of a “Feynman Roadmap” instead of the “More-than-Moore” technology roadmap. The sharing of the author’s industrially proven track record of development, design, and manufacturing, along with their visionary approach to the technology, will allow readers to jump ahead in their understanding of the core of the topic in a very effective way. Students, researchers, engineers, and technologists involved in silicon-based sensor and actuator research and development will find a wealth of useful and groundbreaking information in this book.


Aluminum Nitride Contour Mode Resonators

Aluminum Nitride Contour Mode Resonators
Author: Joshua Robert Melnick
Publisher:
Total Pages: 250
Release: 2015
Genre: Microelectromechanical systems
ISBN:

Download Aluminum Nitride Contour Mode Resonators Book in PDF, ePub and Kindle


High-Q Low-Impedance MEMS Resonators

High-Q Low-Impedance MEMS Resonators
Author: Li-Wen Hung
Publisher:
Total Pages: 302
Release: 2011
Genre:
ISBN:

Download High-Q Low-Impedance MEMS Resonators Book in PDF, ePub and Kindle

The ever increasing need for regional and global roaming together with continuous advances in wireless communication standards continue to push future transceivers towards an ability to support multi-mode operation with minimal increases in cost, hardware complexity, and power consumption. RF channel-select filter banks pose a particularly attractive method for achieving multiband reconfigurability, since they not only provide the needed front-end reconfigurability, but also allow for power efficient and versatile transceiver designs, e.g., software-defined radio. Such channel-select filters, however, impose requirements on their constituent resonators that are not yet achievable on the micro-scale. Specifically, capacitively-transduced micromechanical resonators achieve high Q, but suffer from high impedance; while piezoelectric micromechanical resonators offer low impedance, but with insufficient Q. This dissertation demonstrates four new techniques to address the issues in both technologies. Two of the methods recognize that sub-30 nm gap spacing enables electrostatic resonators to achieve acceptably low impedance. Unfortunately, however, such small gaps with the needed high aspect ratios are difficult to achieve via wafer-level batch processing. Two new methods are proposed and experimentally verified for forming sub-30 nm gaps: 1) partial-filling of electrode-to-resonator gaps with atomic layer deposition (ALD) of high-k dielectric; and 2) generating gaps via the volume reduction associated with a silicidation reaction. Among the many benefits provided by a silicide-based approach to gap formation is speed of release, where sub-30 nm gaps can be formed and high-aspect-ratio microstructures can be released via anneals lasting from seconds to a few minutes, regardless the lateral dimensions of the devices. Silicide-induced gap formation further does not require any etching and is applicable to a wide range of applications, from electronics to vacuum packaging. The next two methods seek to circumvent the fact that AlN thin-film resonators have historically been measured with much lower Q than capacitive ones at similar frequencies. As a result, it was commonly accepted that the AlN thin films sputtered at low temperatures are to blame for the lower Q. This dissertation provides experimental evidence that it is not AlN material loss that restricts the Q of conventional AlN resonators, but rather the losses associated with their contacting electrodes. Specifically, a new transducer dubbed the "capacitive-piezoelectric" transducer is introduced that lifts the electrodes away from a piezoelectric resonator by tiny nanometer scale gaps that retain strong electric fields for good electromechanical coupling, while eliminating electrode-derived losses. After removing the electrode losses, the Q of piezoelectric AlN resonators rise by up to 9 times. A new surface-micromachining fabrication process has been developed for the capacitive-piezoelectric resonators, where the metal electrodes are separated from the AlN resonators by small air (or vacuum) gaps. The second approach for tapping the material Q of AlN uses Q-boosting mechanical circuits, where the electrode-equipped AlN resonators are mechanically coupled to electrode-less ones to form a composite-array. In this structure, the energy shared among all of the resonators in the composite-array effectively boost the Q of the electrode-equipped resonators. The Q of electrode-less resonators are extrapolated from the measurement data to be from 14,040 to 15,795. Both methods achieve measured Q exceeding 10,000, posting the highest reported Q for resonators constructed of sputtered AlN and confirming that AlN is indeed a high-Q material.


Temperature-Compensated and High-Q Piezoelectric Aluminum Nitride Lamb Wave Resonators for Timing and Frequency Control Applications

Temperature-Compensated and High-Q Piezoelectric Aluminum Nitride Lamb Wave Resonators for Timing and Frequency Control Applications
Author: Chih-Ming Lin
Publisher:
Total Pages: 384
Release: 2013
Genre:
ISBN:

Download Temperature-Compensated and High-Q Piezoelectric Aluminum Nitride Lamb Wave Resonators for Timing and Frequency Control Applications Book in PDF, ePub and Kindle

The explosive development of wireless and mobile communication systems has lead to rapid technology innovation in component performance, complementary metal-oxide semiconductor (CMOS) compatible fabrication techniques, and system improvement to satisfy requirements for faster signal processing, cost efficiency, chip miniaturization, and low power consumption. The demands for the high-performance communication systems whose fundamentals are precise timing and frequency control have driven the current research interests to develop advanced reference oscillators and radio frequency (RF) bandpass filters. In turn a promising microelectromechanical systems (MEMS) resonator technology is required to achieve the ultimate goal. That is, micromechanical vibrating resonators with high quality factor (Q) and good frequency-temperature stability at high series resonance frequency (fs) are the required fundamental components for a high-performance wireless communication system. Recently, Lamb wave mode propagating in piezoelectric thin plates has attracted great attention for designs of the electroacoustic resonators since it combines the advantages of bulk acoustic wave (BAW) and surface acoustic wave (SAW): high phase velocity and multiple frequency excitation by an interdigital transducer (IDT). More specifically, the Lamb wave resonator (LWR) based on an aluminum nitride (AlN) thin film has attracted many attentions because it can offer the high resonance frequency, small temperature-induced frequency drift, low motional resistance, and CMOS compatibility. The lowest-order symmetric (S0) Lamb wave mode propagation in the AlN thin plate is particularly preferred because it exhibits a phase velocity close to 10,000 m/s, a low dispersive phase velocity characteristic, and a moderate electromechanical coupling coefficient. However, the uncompensated AlN LWR shows a first-order temperature coefficient of frequency (TCF) of approximately -25 ppm/C. This level of the temperature stability is unsuitable for any timing application. In addition, the Q of the AlN LWR is degraded to several hundred while the IDT finger width is downscaled to a nanometer scale to raise the resonance frequency up to a few GHz. This dissertation presents comprehensive analytical and experimental results on a new class of temperature-compensated and high-Q piezoelectric AlN LWRs. The temperature compensation of the AlN LWR using the S0 Lamb wave mode is achieved by adding a layer of silicon dioxide (SiO2) with an appropriate thickness ratio to the AlN thin film, and the AlN/SiO2 LWRs can achieve a low first-order TCF at room temperature. Based on the multilayer plate composed of a 1-um-thick AlN film and a 0.83-um-thick SiO2 layer, a temperature-compensated LWR operating at a series resonance frequency of 711 MHz exhibits a zero first-order TCF and a small second-order TCF of -21.5 ppb/C^2 at its turnover temperature, 18.05 C. The temperature dependence of fractional frequency variation is less than 250 parts per million (ppm) over a wide temperature range from -55 to 125 C. In addition to the temperature compensation at room temperature, the thermal compensation of the AlN LWRs is experimentally demonstrated at high temperatures. By varying the normalized AlN and SiO2 thicknesses to the wavelength, the turnover temperature can be designed at high temperatures and the AlN LWRs are temperature-compensated at 214, 430, and 542 C, respectively. The temperature-compensated AlN/SiO2 LWRs are promising for a lot of applications including thermally stable oscillators, bandpass filters, and sensors at room temperature as well as high temperatures. The influences of the bottom electrode upon the characteristics of the LWRs utilizing the S0 Lamb wave mode in the AlN thin plate are theoretically and experimentally studied. Employment of a floating bottom electrode for the LWR reduces the static capacitance in the AlN membrane and accordingly enhances the effective coupling coefficient. The floating bottom electrode simultaneously offers a large coupling coefficient and a simple fabrication process than the grounded bottom electrode but the transduction efficiency is not sacrificed. In contrast to those with the bottom electrode, an AlN LWR with no bottom electrode shows a high Q of around 3,000 since it gets rid of the electrical loss in the metal-to-resonator interface. In addition, it exhibits better power handling capacity than those with the bottom electrode since less thermal nonlinearity induced by the self-heating exists in the resonators. In order to boost the Q, a new class of the AlN LWRs using suspended convex edges is introduced in this dissertation for the first time. The suspended convex edges can efficiently reflect the Lamb waves back towards the transducer as well as confine the mechanical energy in the resonant body. Accordingly the mechanical energy dissipation through the support tethers is significantly minimized and the Q can be markedly enhanced. More specifically, the measured frequency response of a 491.8-MHz LWR with suspended biconvex edges yields a Q of 3,280 which represents a 2.6x enhancement in Q over a 517.9-MHz LWR based on the same AlN thin plate but with the suspended flat edges. The suspended convex edges can efficiently confine mechanical energy in the LWR and reduce the energy dissipation through the support tethers without increasing the motional impedance of the resonator. In addition, the radius of curvature of the suspended convex edges and the AlN thickness normalized to the wavelength can be further optimized to simultaneously obtain high Q, low motional impedance, and large effective coupling coefficient. To further enhance the Q of the LWR, a composite plate including an AlN thin film and an epitaxial cubic silicon carbide (3C-SiC) layer is introduced to enable high-Q and high-frequency micromechanical resonators utilizing high-order Lamb wave modes. The use of the epitaxial 3C-SiC layer is attractive as SiC crystals have been theoretically proven to have an exceptionally large fs and Q product due to its low acoustic loss characteristic at microwave frequencies. In addition, AlN and 3C-SiC have well-matched mechanical and electrical properties, making them a suitable material stack for the electroacoustic resonators. The epitaxial 3C-SiC layer not only provides the micromechanical resonators with a low acoustic loss layer to boost their Q but also enhances the electromechanical coupling coefficients of some high-order Lamb waves in the AlN/3C-SiC composite plate. A micromachined electroacoustic resonator utilizing the third quasi-symmetric (QS3) Lamb wave mode in the AlN/3C-SiC composite plate exhibits a Q of 5,510 at 2.92 GHz, resulting in the highest fs and Q product, 1.61x10^13 Hz, among suspended piezoelectric thin film resonators to date.


Piezoelectric MEMS Resonators

Piezoelectric MEMS Resonators
Author: Harmeet Bhugra
Publisher: Springer
Total Pages: 423
Release: 2017-01-09
Genre: Technology & Engineering
ISBN: 3319286889

Download Piezoelectric MEMS Resonators Book in PDF, ePub and Kindle

This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associated with testing and qualification Examples of commercialization paths for piezoelectric MEMS resonators in the timing and the filter markets ...and more! The authors present industry and academic perspectives, making this book ideal for engineers, graduate students, and researchers.


Tuneable Film Bulk Acoustic Wave Resonators

Tuneable Film Bulk Acoustic Wave Resonators
Author: Spartak Gevorgian
Publisher: Springer Science & Business Media
Total Pages: 264
Release: 2013-02-01
Genre: Technology & Engineering
ISBN: 9781447158448

Download Tuneable Film Bulk Acoustic Wave Resonators Book in PDF, ePub and Kindle

To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.a Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the software based cognitive radios is largely hindered by the lack of adequate agile components, first of all tuneable filters. In this sense the electrically switchable and tuneable FBARs are the most promising components to address the complex cost-performance issues in agile microwave transceivers, smart wireless sensor networks etc.Tuneable Film Bulk Acoustic Wave Resonators discusses FBAR need, physics, designs, modelling, fabrication and applications. Tuning of the resonant frequency of the FBARs is considered. Switchable and tuneable FBARs based on electric field induced piezoelectric effect in paraelectric phase ferroelectrics are covered. The resonance of these resonators may be electrically switched on and off and tuned without hysteresis.The book is aimed at microwave and sensor specialists in the industry and graduate students. Readers will learn about principles of operation and possibilities of the switchable and tuneable FBARs, and will be given general guidelines for designing, fabrication and applications of these devices."


Semiconductor Laser Engineering, Reliability and Diagnostics

Semiconductor Laser Engineering, Reliability and Diagnostics
Author: Peter W. Epperlein
Publisher: John Wiley & Sons
Total Pages: 522
Release: 2013-01-25
Genre: Technology & Engineering
ISBN: 1118481860

Download Semiconductor Laser Engineering, Reliability and Diagnostics Book in PDF, ePub and Kindle

This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.


Transducers and Arrays for Underwater Sound

Transducers and Arrays for Underwater Sound
Author: Charles Sherman
Publisher: Springer Science & Business Media
Total Pages: 610
Release: 2007-01-05
Genre: Technology & Engineering
ISBN: 0387331395

Download Transducers and Arrays for Underwater Sound Book in PDF, ePub and Kindle

The most comprehensive book on electroacoustic transducers and arrays for underwater sound Includes transducer modeling techniques and transducer designs that are currently in use Includes discussion and analysis of array interaction and nonlinear effects in transducers Contains extensive data in figures and tables needed in transducer and array design Written at a level that will be useful to students as well as to practicing engineers and scientists