High Frequency Thin Film Bulk Acoustic Wave Resonators For Gas And Bio Analytical Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Frequency Thin Film Bulk Acoustic Wave Resonators For Gas And Bio Analytical Applications PDF full book. Access full book title High Frequency Thin Film Bulk Acoustic Wave Resonators For Gas And Bio Analytical Applications.

Multilayer Integrated Film Bulk Acoustic Resonators

Multilayer Integrated Film Bulk Acoustic Resonators
Author: Yafei Zhang
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2012-08-28
Genre: Technology & Engineering
ISBN: 3642317766

Download Multilayer Integrated Film Bulk Acoustic Resonators Book in PDF, ePub and Kindle

Mulilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.


Acoustic Wave and Electromechanical Resonators

Acoustic Wave and Electromechanical Resonators
Author: Humberto Campanella
Publisher: Artech House
Total Pages: 364
Release: 2010
Genre: Technology & Engineering
ISBN: 1607839784

Download Acoustic Wave and Electromechanical Resonators Book in PDF, ePub and Kindle

This groundbreaking book provides you with a comprehensive understanding of FBAR (thin-film bulk acoustic wave resonator), MEMS (microelectomechanical system), and NEMS (nanoelectromechanical system) resonators. For the first time anywhere, you find extensive coverage of these devices at both the technology and application levels. This practical reference offers you guidance in design, fabrication, and characterization of FBARs, MEMS and NEBS. It discusses the integration of these devices with standard CMOS (complementary-metal-oxide-semiconductor) technologies, and their application to sensing and RF systems. Moreover, this one-stop resource looks at the main characteristics, differences, and limitations of FBAR, MEMS, and NEMS devices, helping you to choose the right approaches for your projects. Over 280 illustrations and more than 130 equations support key topics throughout the book.


Tuneable Film Bulk Acoustic Wave Resonators

Tuneable Film Bulk Acoustic Wave Resonators
Author: Spartak Gevorgian
Publisher: Springer Science & Business Media
Total Pages: 255
Release: 2013-02-14
Genre: Technology & Engineering
ISBN: 1447149440

Download Tuneable Film Bulk Acoustic Wave Resonators Book in PDF, ePub and Kindle

To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high. Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the software based cognitive radios is largely hindered by the lack of adequate agile components, first of all tuneable filters. In this sense the electrically switchable and tuneable FBARs are the most promising components to address the complex cost-performance issues in agile microwave transceivers, smart wireless sensor networks etc. Tuneable Film Bulk Acoustic Wave Resonators discusses FBAR need, physics, designs, modelling, fabrication and applications. Tuning of the resonant frequency of the FBARs is considered. Switchable and tuneable FBARs based on electric field induced piezoelectric effect in paraelectric phase ferroelectrics are covered. The resonance of these resonators may be electrically switched on and off and tuned without hysteresis. The book is aimed at microwave and sensor specialists in the industry and graduate students. Readers will learn about principles of operation and possibilities of the switchable and tuneable FBARs, and will be given general guidelines for designing, fabrication and applications of these devices.


Film Bulk Acoustic Resonators of High Quality Factors in Liquid Environments for Biosensing Applications

Film Bulk Acoustic Resonators of High Quality Factors in Liquid Environments for Biosensing Applications
Author: Wencheng Xu
Publisher:
Total Pages: 74
Release: 2011
Genre: Blood
ISBN:

Download Film Bulk Acoustic Resonators of High Quality Factors in Liquid Environments for Biosensing Applications Book in PDF, ePub and Kindle

Micro-electro-mechanical systems (MEMS) film bulk acoustic resonator (FBAR) demonstrates label-free biosensing capabilities and is considered to be a promising alternative of quartz crystal microbalance (QCM). FBARs achieve great success in vacuum, or in the air, but find limited applications in liquid media because squeeze damping significantly degrades quality factor (Q) and results in poor frequency resolution. A transmission-line model shows that by confining the liquid in a thickness comparable to the acoustic wavelength of the resonator, Q can be considerably improved. The devices exhibit damped oscillatory patterns of Q as the liquid thickness varies. Q assumes its maxima and minima when the channel thickness is an odd and even multiple of the quarter-wavelength of the resonance, respectively. Microfluidic channels are integrated with longitudinal-mode FBARs (L-FBARs) to realize this design; a tenfold improvement of Q over fully-immersed devices is experimentally verified. Microfluidic integrated FBAR sensors have been demonstrated for detecting protein binding in liquid and monitoring the Vroman effect (the competitive protein adsorption behavior), showing their potential as a promising bio-analytical tool. A contour-mode FBAR (C-FBAR) is developed to further improve Q and to alleviate the need for complex integration of microfluidic channels. The C-FBAR consists of a suspended piezoelectric ring made of aluminum nitride and is excited in the fundamental radial-extensional mode. By replacing the squeeze damping with shear damping, high Qs (189 in water and 77 in human whole blood) are obtained in semi-infinite depth liquids. The C-FBAR sensors are characterized by aptamer - thrombin binding pairs and aqueous glycerine solutions for mass and viscosity sensing schemes, respectively. The C-FBAR sensor demonstrates accurate viscosity measurement from 1 to 10 centipoise, and can be deployed to monitor in-vitro blood coagulation processes in real time. Results show that its resonant frequency decreases as the viscosity of the blood increases during the fibrin generation process after the coagulation cascade. The coagulation time and the start/end of the fibrin generation are quantitatively determined, showing the C-FBAR can be a low-cost, portable yet reliable tool for hemostasis diagnostics.


Chemical and Biochemical Applications

Chemical and Biochemical Applications
Author: Pierre Laszlo
Publisher: Elsevier
Total Pages: 317
Release: 2012-12-02
Genre: Science
ISBN: 0323156347

Download Chemical and Biochemical Applications Book in PDF, ePub and Kindle

NMR of Newly Accessible Nuclei, Volume 1: Chemical and Biochemical Applications is a 10-chapter text that explores the properties, advantages, developments, and chemical and biochemical applications of NMR technique. This book describes first the operation of an NMR spectrometer under its two aspects, namely, the instrumental and the computational aspects. The next chapters are devoted to some of the most important pulse sequences. The discussion then shifts to the various factors determining the position of the observed absorption and those responsible for the various relaxation processes. The last chapters deal with the specific applications of NMR, including in cation salvation, calcium-binding proteins, polyelectrolyte systems, halogens, and antibiotic ionophores. This book is of value to inorganic and analytical chemists, and biophysicists.


Thin Film Bulk Acoustic Wave Devices

Thin Film Bulk Acoustic Wave Devices
Author: Tuomas Pensala
Publisher:
Total Pages:
Release: 2011
Genre: Radio filters
ISBN: 9789513877224

Download Thin Film Bulk Acoustic Wave Devices Book in PDF, ePub and Kindle

Thin film bulk acoustic wave (BAW) resonators and filters operating in the GHz range are used in mobile phones for the most demanding filtering applications and complement the surface acoustic wave (SAW) based filters. Their main advantages are small size and high performance at frequencies above 2 GHz. This work concentrates on the characterization, performance optimization, and modelling techniques of thin film BAW devices. Laser interferometric vibration measurements together with plate wave dispersion modeling are used to extract the full set of elastic material parameters for sputter deposited ZnO, demonstrating a method for obtaining material data needed for accurate simulation of the devices. The effectiveness of the acoustic interference reflector used to isolate the vibration from the substrate is studied by 1-D modeling, 2-D finite element method and by electrical and laser interferometric measurements. It is found that the Q-value of reflector-based BAW resonators operating at 2 GHz is limited to approximately 2000 by mechanisms other than leakage through the reflector. Suppression of spurious resonances in ZnO resonators is studied in depth by modeling and measurements. It is verified that the approximate mode orthogonality is behind the suppression in boundary frame type ZnO devices operating in the piston mode, but also another narrow band mode suppression mechanism is found. A plate wave dispersion based 2-D simulation scheme for laterally acoustically coupled BAW resonator filters is developed and employed in designing of experimental devices, which show both good agreement with the model predictions and a remarkable 4.9 % relative bandwidth.


Design, Modeling and Fabrication of Shear Mode Bulk Acoustic Wave Sensor as a Potential Biosensor

Design, Modeling and Fabrication of Shear Mode Bulk Acoustic Wave Sensor as a Potential Biosensor
Author: Chi-Jung Cheng
Publisher:
Total Pages: 117
Release: 2012
Genre:
ISBN:

Download Design, Modeling and Fabrication of Shear Mode Bulk Acoustic Wave Sensor as a Potential Biosensor Book in PDF, ePub and Kindle

There has been an increasing interest in development of thin film bulk acoustic wave resonator devices for chemical and biological sensing applications in the environmental and biomedical industries. The zinc oxide thin film FBAR devices provide attractive advantages, such as high resonant frequency, small size, and rapid response. Typically, the ZnO-based FBAR devices are operated in the longitudinal wave mode where the ZnO crystallites are perpendicular to the substrate. However, the longitudinal wave mode is adversely affected when used in liquid environments. To overcome this limitation, the shear mode solidly mounted film bulk acoustic wave resonator device is presented in this dissertation.