Geometrical Methods For The Theory Of Linear Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Geometrical Methods For The Theory Of Linear Systems PDF full book. Access full book title Geometrical Methods For The Theory Of Linear Systems.

Geometrical Methods for the Theory of Linear Systems

Geometrical Methods for the Theory of Linear Systems
Author: C.I. Byrnes
Publisher: Springer Science & Business Media
Total Pages: 320
Release: 2012-12-06
Genre: Science
ISBN: 9400990820

Download Geometrical Methods for the Theory of Linear Systems Book in PDF, ePub and Kindle

The lectures contained in this book were presented at Harvard University in June 1979. The workshop at which they were presented was the third such on algebro-geometric methods. The first was held in 1973 in London and the emphasis was largely on geometric methods. The second was held at Ames Research Center-NASA in 1976. There again the emphasis was on geometric methods, but algebraic geometry was becoming a dominant theme. In the two years after the Ames meeting there was tremendous growth in the applications of algebraic geometry to systems theory and it was becoming clear that much of the algebraic systems theory was very closely related to the geometric systems theory. On this basis we felt that this was the right time to devote a workshop to the applications of algebra and algebraic geometry to linear systems theory. The lectures contained in this volume represent all but one of the tutorial lectures presented at the workshop. The lec ture of Professor Murray Wonham is not contained in this volume and we refer the interested to the archival literature. This workshop was jointly sponsored by a grant from Ames Research Center-NASA and a grant from the Advanced Study Institute Program of NATO. We greatly appreciate the financial support rendered by these two organizations. The American Mathematical Society hosted this meeting as part of their Summer Seminars in Applied Mathematics and will publish the companion volume of con tributed papers.


Methods of Algebraic Geometry in Control Theory: Part I

Methods of Algebraic Geometry in Control Theory: Part I
Author: Peter Falb
Publisher: Springer
Total Pages: 202
Release: 2018-08-25
Genre: Mathematics
ISBN: 3319980262

Download Methods of Algebraic Geometry in Control Theory: Part I Book in PDF, ePub and Kindle

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik


Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations
Author: V.I. Arnold
Publisher: Springer Science & Business Media
Total Pages: 366
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461210372

Download Geometrical Methods in the Theory of Ordinary Differential Equations Book in PDF, ePub and Kindle

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.


Geometric Methods in System Theory

Geometric Methods in System Theory
Author: D.Q. Mayne
Publisher: Springer Science & Business Media
Total Pages: 322
Release: 2012-12-06
Genre: Science
ISBN: 9401026750

Download Geometric Methods in System Theory Book in PDF, ePub and Kindle

Geometric Methods in System Theory In automatic control there are a large number of applications of a fairly simple type for which the motion of the state variables is not free to evolve in a vector space but rather must satisfy some constraints. Examples are numerous; in a switched, lossless electrical network energy is conserved and the state evolves on an ellipsoid surface defined by x'Qx equals a constant; in the control of finite state, continuous time, Markov processes the state evolves on the set x'x = 1, xi ~ O. The control of rigid body motions and trajectory control leads to problems of this type. There has been under way now for some time an effort to build up enough control theory to enable one to treat these problems in a more or less routine way. It is important to emphasise that the ordinary vector space-linear theory often gives the wrong insight and thus should not be relied upon.


Methods of Algebraic Geometry in Control Theory: Part I

Methods of Algebraic Geometry in Control Theory: Part I
Author: Peter Falb
Publisher: Birkhäuser
Total Pages: 204
Release: 2012-06-12
Genre: Mathematics
ISBN: 9781468492231

Download Methods of Algebraic Geometry in Control Theory: Part I Book in PDF, ePub and Kindle

Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of these notes is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory. I began the development of these notes over fifteen years ago with a series of lectures given to the Control Group at the Lund Institute of Technology in Sweden. Over the following years, I presented the material in courses at Brown several times and must express my appreciation for the feedback (sic!) received from the students. I have attempted throughout to strive for clarity, often making use of constructive methods and giving several proofs of a particular result. Since algebraic geometry draws on so many branches of mathematics and can be dauntingly abstract, it is not easy to convey its beauty and utility to those interested in applications. I hope at least to have stirred the reader to seek a deeper understanding of this beauty and utility in control theory. The first volume dea1s with the simplest control systems (i. e. single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i. e. affine algebraic geometry).