Experimental Thermodynamic Studies For Efficient Extraction Of Uranium From Seawater PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Experimental Thermodynamic Studies For Efficient Extraction Of Uranium From Seawater PDF full book. Access full book title Experimental Thermodynamic Studies For Efficient Extraction Of Uranium From Seawater.

Enhancement of Extraction of Uranium from Seawater

Enhancement of Extraction of Uranium from Seawater
Author:
Publisher:
Total Pages: 21
Release: 2016
Genre:
ISBN:

Download Enhancement of Extraction of Uranium from Seawater Book in PDF, ePub and Kindle

Even at a concentration of 3 [mu]g/L, the world's oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand which was originally discovered and promoted by Japanese studies in the late 1980s. Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method's complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater which could expand the known stockpiles of other highly desirable materials.


Thermodynamic Studies to Support Extraction of Uranium from Seawater

Thermodynamic Studies to Support Extraction of Uranium from Seawater
Author:
Publisher:
Total Pages: 15
Release: 2016
Genre:
ISBN:

Download Thermodynamic Studies to Support Extraction of Uranium from Seawater Book in PDF, ePub and Kindle

This milestone report summarizes the data obtained in FY16 on the major task of quantifying the binding strength of amidoxime-related ligands. Thermodynamic studies of the interaction between U(VI) and amidoxime ligand HLIII were studied to quantify the binding ability of U(VI) with amidoxime-related ligands and help to select grafting/reaction conditions so that higher yield of preferred amidoximerelated ligands is obtained. Besides the thermodynamic task, structural studies on vanadium complexation with amidoxime ligand were conducted to help understand the extremely strong sorption of vanadium on poly(amidoxime) sorbents. Data processing and summarization of the vanadium system are in progress and will be included in the next milestone report.


Extraction of Uranium from Seawater

Extraction of Uranium from Seawater
Author: Maha Niametullah Haji
Publisher:
Total Pages: 167
Release: 2017
Genre: Ocean
ISBN:

Download Extraction of Uranium from Seawater Book in PDF, ePub and Kindle

Seawater is estimated to contain 4.5 billion tonnes of uranium, approximately 1000 times that available in conventional terrestrial resources. Finding a sustainable way to harvest uranium from seawater will provide a source of nuclear fuel for generations to come, while also giving all countries with ocean access a stable supply. This will also eliminate the need to store spent fuel for potential future reprocessing, thereby addressing nuclear proliferation issues as well. While extraction of uranium from seawater has been researched for decades, no economical, robust, ocean-deployable method of uranium collection has been presented to date. This thesis presents a symbiotic approach to ocean harvesting of uranium where a common structure supports a wind turbine and a device to harvest uranium from seawater. The Symbiotic Machine for Ocean uRanium Extraction (SMORE) created and tested decouples the function of absorbing uranium from the function of deploying the absorbent which enables a more efficient absorbent to be developed by chemists. The initial SMORE concept involves an adsorbent device that is cycled through the seawater beneath the turbine and through an elution plant located on a platform above the sea surface. This design allows for more frequent harvesting, reduced down- time, and a reduction in the recovery costs of the adsorbent. Specifically, the design decouples the mechanical and chemical requirements of the device through a hard, permeable outer shell containing uranium adsorbing fibers. This system is designed to be used with the 5-MW NREL OC3-Hywind floating spar wind turbine. To optimize the decoupling of the chemical and mechanical requirements using the shell enclosures for the uranium adsorbing fibers, an initial design analysis of the enclosures is presented. Moreover, a flume experiment using filtered, temperature- controlled seawater was developed to determine the effect that the shells have on the uptake of the uranium by the fibers they enclose. For this experiment, the AI8 amidoxime-based adsorbent fiber developed by Oak Ridge National Laboratory was used, which is a hollow-gear-shaped, high surface area polyethylene fiber prepared by radiation-induced graft polymerization of the amidoxime ligand and a vinylphosphonic acid comonomer. The results of the flume experiment were then used to inform the design and fabrication of two 1/10th physical scale SMORE prototypes for ocean testing. The AI8 adsorbent fibers were tested in two shell designs on both a stationary and a moving system during a nine-week ocean trial, with the latter allowing the effect of additional water flow on the adsorbents uranium uptake to be investigated. A novel method using the measurement of radium extracted onto MnO2 impregnated acrylic fibers to quantify the volume of water passing through the shells of the two systems was utilized. The effect of a full-scale uranium harvesting system on the hydrodynamics of an offshore wind turbine were then investigated using a 1/150th Froude scale wave tank test. These experiments compared the measured excitation forces and responses of two versions of SMORE to those of an unmodified floating wind turbine. With insights from the experiments on what a final full-scale design might look like, a cost-analysis was performed to determine the overall uranium production cost from a SMORE device. In this analysis, the capital, operating, and decommissioning costs were calculated and summed using discounted cash ow techniques similar to those used in previous economic models of the uranium adsorbent. Major contributions of this thesis include fundamental design tools for the development and evaluation of symbiotic systems to harvest uranium or other minerals from seawater. These tools will allow others to design offshore uranium harvesting systems based on the adsorbent properties and the scale of the intended installation. These flexible tools can be tuned for a particular adsorbent, location, and installation size, thereby allowing this technology to spread broadly.


Enhancement of Extraction of Uranium from Seawater - Final Report

Enhancement of Extraction of Uranium from Seawater - Final Report
Author:
Publisher:
Total Pages: 20
Release: 2016
Genre:
ISBN:

Download Enhancement of Extraction of Uranium from Seawater - Final Report Book in PDF, ePub and Kindle

Even at a concentration of 3 [mu]g/L, the world's oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand which was originally discovered and promoted by Japanese studies in the late 1980s. Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method's complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater which could expand the known stockpiles of other highly desirable materials.


Extraction of Uranium from Seawater

Extraction of Uranium from Seawater
Author:
Publisher:
Total Pages:
Release: 1979
Genre:
ISBN:

Download Extraction of Uranium from Seawater Book in PDF, ePub and Kindle

A major assessment was made of the uranium resources in seawater. Several concepts for moving seawater to recover the uranium were investigated, including pumping the seawater and using natural ocean currents or tides directly. The optimal site chosen was on the southeastern Puerto Rico coast, with the south U.S. Atlantic coast as an alternate. The various processes for extracting uranium from seawater were reviewed, with the adsorption process being the most promising at the present time. Of the possible adsorbents, hydrous titanium oxide was found to have the best properties. A uranium extraction plant was conceptually designed. Of the possible methods for contacting the seawater with the adsorbent, a continuous fluidized bed concept was chosen as most practical for a pumped system. A plant recovering 500 tonnes of U3O per year requires 5900 cubic meters per second of seawater to be pumped through the adsorbent beds for a 70% overall recovery efficiency. Total cost of the plant was estimated to be about $6.2 billion. A computer model for the process was used for parametric sensitivity studies and economic projections. Several design case variations were developed. Other topics addressed were the impact of co-product recovery, environmental considerations, etc.


Enhancement of Extraction of Uranium from Seawater {u2013} Final Report

Enhancement of Extraction of Uranium from Seawater {u2013} Final Report
Author:
Publisher:
Total Pages: 20
Release: 2016
Genre:
ISBN:

Download Enhancement of Extraction of Uranium from Seawater {u2013} Final Report Book in PDF, ePub and Kindle

Even at a concentration of 3 ?g/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand which was originally discovered and promoted by Japanese studies in the late 1980s. Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater which could expand the known stockpiles of other highly desirable materials.


Recent International R & D Activities in the Extraction of Uranium from Seawater

Recent International R & D Activities in the Extraction of Uranium from Seawater
Author:
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Recent International R & D Activities in the Extraction of Uranium from Seawater Book in PDF, ePub and Kindle

A literature survey has been conducted to collect information on the International R & D activities in the extraction of uranium from seawater for the period from the 1960s till the year of 2010. The reported activities, on both the laboratory scale bench experiments and the large scale marine experiments, were summarized by country/region in this report. Among all countries where such activities have been reported, Japan has carried out the most advanced large scale marine experiments with the amidoxime-based system, and achieved the collection efficiency (1.5 g-U/kg-adsorbent for 30 days soaking in the ocean) that could justify the development of industrial scale marine systems to produce uranium from seawater at the price competitive with those from conventional uranium resources. R & D opportunities are discussed for improving the system performance (selectivity for uranium, loading capacity, chemical stability and mechanical durability in the sorption-elution cycle, and sorption kinetics) and making the collection of uranium from seawater more economically competitive.


Systems Studies on the Extraction of Uranium from Seawater

Systems Studies on the Extraction of Uranium from Seawater
Author: Michael J. Driscoll
Publisher:
Total Pages: 131
Release: 1981
Genre: Marine mineral resources
ISBN:

Download Systems Studies on the Extraction of Uranium from Seawater Book in PDF, ePub and Kindle

This report summarizes the work done at MIT during FY 1981 on the overall system design of a uranium-from-seawater facility. It consists of a sequence of seven major chapters, each of which was originally prepared as a stand-alone internal progress report. These chapters trace the historical progression of the MIT effort, from an early concern with scoping calculations to define the practical boundaries of a design envelope, as constrained by elementary economic and energy balance considerations, through a parallel evaluation of actively-pumped and passive current-driven concepts, and thence to quantification of the features of a second generation system based on a shipboard-mounted, actively-pumped concept designed around the use of thin beds of powdered ion exchange resin supported by cloth fiber cylinders (similar to the baghouse flyash filters used on power station offgas). An assessment of the apparently inherent limitations of even thin settled-bed sorber media then led to selection of an expanded bed (in the form of an ion exchange "wool"), which would permit an order of magnitude increase in flow loading, as a desirable advance. Thus the final two chapters evaluate ways in which this approach could be implemented, and the resulting performance levels which could be attained. Overall, U 308 production costs under 200 $/lb appear to be within reach if a high capacity (several thousand ppm U) ion exchange wool can be developed.


Nuclear Science Abstracts

Nuclear Science Abstracts
Author:
Publisher:
Total Pages: 692
Release: 1974
Genre: Nuclear energy
ISBN:

Download Nuclear Science Abstracts Book in PDF, ePub and Kindle