Effects Of Surface Plasmons In Subwavelength Metallic Structures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Effects Of Surface Plasmons In Subwavelength Metallic Structures PDF full book. Access full book title Effects Of Surface Plasmons In Subwavelength Metallic Structures.

Surface Plasmon Nanophotonics

Surface Plasmon Nanophotonics
Author: Mark L. Brongersma
Publisher: Springer
Total Pages: 270
Release: 2007-09-18
Genre: Science
ISBN: 1402043333

Download Surface Plasmon Nanophotonics Book in PDF, ePub and Kindle

This book discusses a new class of photonic devices, known as surface plasmon nanophotonic structures. The book highlights several exciting new discoveries, while providing a clear discussion of the underlying physics, the nanofabrication issues, and the materials considerations involved in designing plasmonic devices with new functionality. Chapters written by the leaders in the field of plasmonics provide a solid background to each topic.


Surface Modes at Metallic an Photonic Crystal Interfaces

Surface Modes at Metallic an Photonic Crystal Interfaces
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download Surface Modes at Metallic an Photonic Crystal Interfaces Book in PDF, ePub and Kindle

A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it is called extraordinary transmission. It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a periodic subwavelength hole array in a metallic film. The common theories in literatures are based on these arguments. The surface plasmons cannot be excited by incident plane waves directly because of momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited. Then these surface plasmons will collect the energy along the input surface and carry them to the holes. So the transmission can be bigger than the filling ratio. Based on this picture, they deduced naturally that when surface plasmons momentum-matching condition is satisfied, the surface plasmons are excited sufficiently and the transmission reaches its peak. I present a new theory from first principles to explain EOT through one-dimensional periodic subwavelength metallic slits in this thesis. This theory can also be extended to 2D hole arrays. I define the incident wavelengths that satisfy the momentum-matching condition as surface resonant wavelengths. I proved analytically that the transmission is actually zero at the surface resonant wavelengths. The correct logic is: When the momentum-matching condition is satisfied, the surface plasmons excited by each slit interfere constructively with each other, the total surface plasmons will go to infinity. But the law of nature forbids the infinity. The only solution is the surface plasmon excited by one slit is zero and all the energy is reflected. In my theory, the term corresponding to surface plasmons appear explicitly in the equations. So it confirms the importance of surface plasmons without any doubt. The theory divides the transmission process into two steps: energy collection process along the input surface and the propagation process in the slits. In the first process, the surface plasmons collect the energy along the input surface and carry them to the slits. This process happens efficiently at any wavelength other than the surface resonant wavelengths. So EOT can happen at almost any wavelength. After the energy enter the slits, the Fabry-Perot interference between the input and output surface decides how much energy is emitted from the slits. So the EOT wavelengths are decided by the Fabry-Perot resonances. I also use my theory to explain the data in literatures. The transmission spectra through 1D slits or 2D hole arrays in literatures agree with my theory very well. The new theory can explain a lot of experimental results published recently, such as the transmission through randomized hole arrays, the strong influence of the hole shape on the transmission peaks, and so on. Beaming is another far-field effect resulting from surface modes. Normally light coming from a subwavelength waveguide is diffracted to all angles. With the help of surface modes, we can confine the output field in a small angle interval. This phenomenon is called beaming (46). The principle of the beaming has been explained clearly in literatures (47). To achieve good beaming, a photonic crystal waveguide need a surface layer to support surface modes and a grating layer to coupling the evanescent surface modes into propagation modes. A metallic beaming structure is generally a subwavelength waveguide surrounded by periodic structures such as grooves or dielectric gratings (53; 54). The flat metal surface supports the surface mode, so additional surface layer is not necessary. The periodic structures work as the grating layer.


Subwavelength Surface Plasmons Based on Novel Structures and Metamaterials

Subwavelength Surface Plasmons Based on Novel Structures and Metamaterials
Author: Ruoxi Yang
Publisher:
Total Pages: 344
Release: 2013
Genre: Nanophotonics
ISBN:

Download Subwavelength Surface Plasmons Based on Novel Structures and Metamaterials Book in PDF, ePub and Kindle

"With the rapid development of nanofabrication technology and powerful computational tools over the last decade, nanophotonics has enjoyed tremendous innovation and found wide applications in ultrahigh-speed data transmission, sensitive optical detection, manipulation of ultra-small objects, and visualization of nanoscale patterns. Surface plasmon-based photonics (or plasmonics) merges electronics and photonics at the nanoscale, creating the ability to combine the superior technical advantages of photonics and electronics on the same chip. Plasmonics focuses on the innovation of photonic devices by exploiting the optical property of metals. In particular, the oscillation of free electrons, when properly driven by electromagnetic waves, would form plasmon-polaritons in the vicinity of a metal surface and potentially result in extreme light confinement, which may beat the diffraction limit faced by conventional photonic devices and enable greatly enhanced light-matter interactions at the deep subwavelength scale. The objective of this dissertation is to develop subwavelength or deep subwavelength plasmonic waveguides and explore their integration on conventional dielectric platforms for multiple applications. three novel structures (or mechanisms) are employed to develop and integrate nanoplasmonic waveguides; each consists of one part of the dissertation. The first part of this dissertation covers the design, fabrication, and demonstration of two-dimensional and three-dimensional metal-insulator-metal plasmonic couplers for mode transformation between photonic and nanoplasmonic domains on the silicon-on-insulator platform. In particular, deep subwavelength plasmonic modes under 100-nm are achieved via end-fire coupling and adiabatic mode transformation at telecom wavelengths. The second part studies metallic gratings as spoof plasmonic waveguides hosting deep subwavelength surface propagation modes. Metallic gratings under different dielectric coatings are numerically investigated for terahertz and gigahertz regions. the third part proposes, explores, and experimentally demonstrates the 'metametal' for super surface wave excitation based on multilayered metal-insulator stacks, where the dispersion of the supported surface modes can be engineered by insulator dopant films in a given metal. The final part discusses the potential applications of active plasmonics for optical sensing, modulation and photovoltaics."--Abstract.


Collective Plasmon-Modes in Gain Media

Collective Plasmon-Modes in Gain Media
Author: V.A.G. Rivera
Publisher: Springer
Total Pages: 147
Release: 2014-09-03
Genre: Science
ISBN: 3319095250

Download Collective Plasmon-Modes in Gain Media Book in PDF, ePub and Kindle

This book represents the first detailed description, including both theoretical aspects and experimental methods, of the interaction of rare-earth ions with surface plasmon polariton from the point of view of collective plasmon-photon interactions via resonance modes (metal nanoparticles or nanostructure arrays) with quantum emitters (rare-earth ions). These interactions are of particular interest for applications to optical telecommunications, optical displays, and laser solid state technologies. Thus, our main goal is to give a more precise overview of the rapidly emerging field of nanophotonics by means of the study of the quantum properties of light interaction with matter at the nanoscale. In this way, collective plasmon-modes in a gain medium result from the interaction/coupling between a quantum emitter (created by rare-earth ions) with a metallic surface, inducing different effects such as the polarization of the metal electrons (so-called surface plasmon polariton - SPP), a field enhancement sustained by resonance coupling, or transfer of energy due to non-resonant coupling between the metallic nanostructure and the optically active surrounding medium. These effects counteract the absorption losses in the metal to enhance luminescence properties or even to control the polarization and phase of quantum emitters. The engineering of plasmons/SPP in gain media constitutes a new field in nanophotonics science with a tremendous technological potential in integrated optics/photonics at the nanoscale based on the control of quantum effects. This book will be an essential tool for scientists, engineers, and graduate and undergraduate students interested not only in a new frontier of fundamental physics, but also in the realization of nanophotonic devices for optical telecommunication.


Plasmonic Effects in Metal-semiconductor Nanostructures

Plasmonic Effects in Metal-semiconductor Nanostructures
Author: Alexey A. Toropov
Publisher: Oxford University Press, USA
Total Pages: 385
Release: 2015
Genre: Science
ISBN: 0199699313

Download Plasmonic Effects in Metal-semiconductor Nanostructures Book in PDF, ePub and Kindle

One of the most promising trends in modern nanophotonics is the employment of plasmonic effects in the engineering of advanced device nanostructures. This book implements the binocular vision of such a complex metal-semiconductor system, examining both the constituents and reviewing the characteristics of promising constructive materials.


Plasmonics: Fundamentals and Applications

Plasmonics: Fundamentals and Applications
Author: Stefan Alexander Maier
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2007-05-16
Genre: Technology & Engineering
ISBN: 0387378251

Download Plasmonics: Fundamentals and Applications Book in PDF, ePub and Kindle

Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.


Design and Implementation of Plasmonic Cavities in Thin Metallic Films

Design and Implementation of Plasmonic Cavities in Thin Metallic Films
Author: John Liu (Photovoltaics engineer)
Publisher: Stanford University
Total Pages: 97
Release: 2010
Genre:
ISBN:

Download Design and Implementation of Plasmonic Cavities in Thin Metallic Films Book in PDF, ePub and Kindle

Metals contain a sea of free electrons that are easily driven into collective oscillation by electromagnetic waves. As a result, small metal objects can serve as antennas that strongly scatter light. At the same time, extended metal surfaces have been shown to guide surface plasmons (photons bound to surface charge oscillations) that can confine light to deep sub-wavelength dimensions. Patterned metallic films can combine both the scattering and guiding properties of metals to capture and concentrate light from free space into a photodetector or to control the emission of light from emitting media. We first consider the wide range of functions that can be achieved in directing light emission with the help of smooth metallic films. We then describe how light interacts with patterned metallic films and present a detailed study of the effect of a single metallic groove on the scattering and surface plasmon guiding processes. This has lead to our discovery of new, exciting opportunities for dense optical functionality with non-periodically patterned metallic films. We show that a micronscale structure consisting of just two grooves in a metal film can lead to directional light coupling and wavelength splitting with a contrast ratio of 3:1. Our understanding is then generalized giving rise to a fast, simplified optimization of large non-periodic structures for a desired function. Lastly we consider the efficiency and bandwidth limits of coupling light through sub-wavelength slits for photodetection. We outline a path to efficient, spectrally selective detection which may find application in compact, polarization sensitive, multi-wavelength plasmonic detectors.


Plasmonics

Plasmonics
Author: Ki Young Kim
Publisher: BoD – Books on Demand
Total Pages: 560
Release: 2012-10-24
Genre: Technology & Engineering
ISBN: 9535107976

Download Plasmonics Book in PDF, ePub and Kindle

The title of this book, Plasmonics: Principles and Applications, encompasses theory, technical issues, and practical applications which are of interest for diverse classes of the plasmonics. The book is a collection of the contemporary researches and developments in the area of plasmonics technology. It consists of 21 chapters that focus on interesting topics of modeling and computational methods, plasmonic structures for light transmission, focusing, and guiding, emerging concepts, and applications.


Plasmonics

Plasmonics
Author: Stefan Enoch
Publisher: Springer
Total Pages: 331
Release: 2012-06-30
Genre: Science
ISBN: 364228079X

Download Plasmonics Book in PDF, ePub and Kindle

This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.