Detectors In Particle Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Detectors In Particle Physics PDF full book. Access full book title Detectors In Particle Physics.

Particle Detectors

Particle Detectors
Author: Claus Grupen
Publisher: Cambridge University Press
Total Pages: 677
Release: 2023-07-31
Genre: Science
ISBN: 1009401491

Download Particle Detectors Book in PDF, ePub and Kindle


Particle Detectors

Particle Detectors
Author: Hermann Kolanoski
Publisher: Oxford University Press
Total Pages: 949
Release: 2020-06-30
Genre: Science
ISBN: 0191899232

Download Particle Detectors Book in PDF, ePub and Kindle

This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.


The Physics of Particle Detectors

The Physics of Particle Detectors
Author: Dan Green
Publisher: Cambridge University Press
Total Pages: 388
Release: 2000-08-15
Genre: Science
ISBN: 9780521662260

Download The Physics of Particle Detectors Book in PDF, ePub and Kindle

This text provides a comprehensive introduction to the physical principles and design of particle detectors, covering all major detector types in use today. Emphasis is placed on explaining the physical principles behind particle detection, showing how those principles are best utilised in real detectors. The book will be of interest and value to undergraduates, graduates and researchers in both particle and nuclear physics. Exercises and detailed further reading lists are included.


Particle Physics Reference Library

Particle Physics Reference Library
Author: Christian W. Fabjan
Publisher: Springer Nature
Total Pages: 1083
Release: 2020
Genre: Elementary particles (Physics).
ISBN: 3030353184

Download Particle Physics Reference Library Book in PDF, ePub and Kindle

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access


Handbook of Particle Detection and Imaging

Handbook of Particle Detection and Imaging
Author: Claus Grupen
Publisher: Springer Science & Business Media
Total Pages: 1251
Release: 2012-01-08
Genre: Science
ISBN: 3642132715

Download Handbook of Particle Detection and Imaging Book in PDF, ePub and Kindle

The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.


Detectors for Particle Radiation

Detectors for Particle Radiation
Author: Konrad Kleinknecht
Publisher: Cambridge University Press
Total Pages: 262
Release: 1998-12-10
Genre: Science
ISBN: 9780521648547

Download Detectors for Particle Radiation Book in PDF, ePub and Kindle

A clear, concise, comprehensive review of detectors of high-energy particles and radiation; thoroughly revised and updated.


A Tour of the Subatomic Zoo

A Tour of the Subatomic Zoo
Author: Cindy Schwarz
Publisher: Morgan & Claypool Publishers
Total Pages: 106
Release: 2017-01-01
Genre: Science
ISBN: 1681744201

Download A Tour of the Subatomic Zoo Book in PDF, ePub and Kindle

A Tour of the Subatomic Zoo is a brief and ambitious expedition into the remarkably simple ingredients of all the wonders of nature. Tour guide, Professor Cindy Schwarz clearly explains the language and substance of elementary particle physics for the 99% of us who are not physicists. With hardly a mathematical formula, views of matter from the atom to the quark are discussed in a form that an interested person with no physics background can easily understand. It is a look not only into some of the most profound insights of our time, but a look at the answers we are still searching for. College and university courses can be developed around this book and it can be used alone or in conjunction with other material. Even college physics majors would enjoy reading this book as an introduction to particle physics. High-school, and even middle-school, teachers could also use this book to introduce this material to their students. It will also be beneficial for high-school teachers who have not been formally exposed to high-energy physics, have forgotten what they once knew, or are no longer up to date with recent developments.


Elementary-Particle Physics

Elementary-Particle Physics
Author: National Research Council
Publisher: National Academies Press
Total Pages: 212
Release: 1998-05-01
Genre: Science
ISBN: 0309060370

Download Elementary-Particle Physics Book in PDF, ePub and Kindle

Part of the Physics in a New Era series of assessments of the various branches of the field, Elementary-Particle Physics reviews progress in the field over the past 10 years and recommends actions needed to address the key questions that remain unanswered. It explains in simple terms the present picture of how matter is constructed. As physicists have probed ever deeper into the structure of matter, they have begun to explore one of the most fundamental questions that one can ask about the universe: What gives matter its mass? A new international accelerator to be built at the European laboratory CERN will begin to explore some of the mechanisms proposed to give matter its heft. The committee recommends full U.S. participation in this project as well as various other experiments and studies to be carried out now and in the longer term.


Evolution of Silicon Sensor Technology in Particle Physics

Evolution of Silicon Sensor Technology in Particle Physics
Author: Frank Hartmann
Publisher: Springer Science & Business Media
Total Pages: 211
Release: 2008-12-01
Genre: Science
ISBN: 3540250948

Download Evolution of Silicon Sensor Technology in Particle Physics Book in PDF, ePub and Kindle

In the post era of the Z and W discovery, after the observation of Jets at UA1 and UA2 at CERN, John Ellis visioned at a HEP conference at Lake Tahoe, California in 1983 “To proceed with high energy particle physics, one has to tag the avour of the quarks!” This statement re ects the need for a highly precise tracking device, being able to resolve secondary and tertiary vertices within high-particle densities. Since the d- tance between the primary interaction point and the secondary vertex is proportional tothelifetimeoftheparticipatingparticle,itisanexcellentquantitytoidentifypar- cle avour in a very fast and precise way. In colliding beam experiments this method was applied especially to tag the presence of b quarks within particle jets. It was rst introduced in the DELPHI experiment at LEP but soon followed by all collider - periments to date. The long expected t quark discovery was possible mainly with the help of the CDF silicon vertex tracker, providing the b quark information. In the beginning of the 21st century the new LHC experiments are beginning to take 2 shape. CMS with its 206m of silicon area is perfectly suited to cope with the high luminosity environment. Even larger detectors are envisioned for the far future, like the SiLC project for the International Linear Collider. Silicon sensors matured from small 1in. single-sided devices to large 6in. double-sided, double metal detectors and to 6in. single-sided radiation hard sensors.


Detectors in Particle Physics

Detectors in Particle Physics
Author: GEORG. WEIDBERG VIEHHAUSER (TONY.)
Publisher:
Total Pages: 0
Release: 2024-02-06
Genre:
ISBN: 9781032246581

Download Detectors in Particle Physics Book in PDF, ePub and Kindle

This textbook provides an accessible yet comprehensive introduction to detectors in particle physics. It emphasises the core physics principles, enabling a deeper understanding of the subject for further and more advanced studies. In addition to the discussion of the underlying detector physics, another aspiration of this book is to introduce the reader to practically important aspects of particle detectors, like electronics, alignment, calibration and simulation of particle detectors. Case studies of the various applications of detectors in particle physics are provided. The primary audience is graduate students in particle or nuclear physics, in addition to advanced undergraduate students in physics. Key Features: Provides an accessible yet thorough discussion of the basic physics principles needed to understand how particle detectors work. Presents applications of the basic physics concepts to examples of modern detectors. Discusses practically important aspects like electronics, alignment, calibration and simulation of particle detectors. Contains exercises for each chapter to further understanding. Georg Viehhauser is a Lecturer in the Physics department at the University of Oxford, UK, and a supernumerary fellow at St. John's College, Oxford, UK. He has been working on a variety of different particle detector technologies, starting with the Forward Chamber A at the DELPHI experiment, the LKr calorimeter for NA48, the muon chambers for ATLAS, and the RICH for CLEO III. More recently, he has contributed to the construction of the ATLAS SCT and he is currently involved in the phase 2 upgrade of the ATLAS ITk, as well as the SVT for the ePIC experiment. He is one of the main organisers of the Forum on Tracking Detector Mechanics. Tony Weidberg is a Professor of Physics at Oxford University, UK and a tutorial fellow at St. John's College. He worked on CCD readout for a scintillating fibre detector at the CERN SPS collider. He played a major role in the founding of the ATLAS experiment and the design of the ATLAS SCT. He has a wide range of experience from detector R&D, assembly and integration of complex detector systems as well as evaluating their performance. He has extensive experience in radiation hardness studies, particularly for optoelectronics and applications of reliability theory. Both authors have a long experience in teaching undergraduate and graduate students at the University of Oxford.