Design And Implementation Of Plasmonic Cavities In Thin Metallic Films PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design And Implementation Of Plasmonic Cavities In Thin Metallic Films PDF full book. Access full book title Design And Implementation Of Plasmonic Cavities In Thin Metallic Films.

Design and Implementation of Plasmonic Cavities in Thin Metallic Films

Design and Implementation of Plasmonic Cavities in Thin Metallic Films
Author: John Liu (Photovoltaics engineer)
Publisher: Stanford University
Total Pages: 97
Release: 2010
Genre:
ISBN:

Download Design and Implementation of Plasmonic Cavities in Thin Metallic Films Book in PDF, ePub and Kindle

Metals contain a sea of free electrons that are easily driven into collective oscillation by electromagnetic waves. As a result, small metal objects can serve as antennas that strongly scatter light. At the same time, extended metal surfaces have been shown to guide surface plasmons (photons bound to surface charge oscillations) that can confine light to deep sub-wavelength dimensions. Patterned metallic films can combine both the scattering and guiding properties of metals to capture and concentrate light from free space into a photodetector or to control the emission of light from emitting media. We first consider the wide range of functions that can be achieved in directing light emission with the help of smooth metallic films. We then describe how light interacts with patterned metallic films and present a detailed study of the effect of a single metallic groove on the scattering and surface plasmon guiding processes. This has lead to our discovery of new, exciting opportunities for dense optical functionality with non-periodically patterned metallic films. We show that a micronscale structure consisting of just two grooves in a metal film can lead to directional light coupling and wavelength splitting with a contrast ratio of 3:1. Our understanding is then generalized giving rise to a fast, simplified optimization of large non-periodic structures for a desired function. Lastly we consider the efficiency and bandwidth limits of coupling light through sub-wavelength slits for photodetection. We outline a path to efficient, spectrally selective detection which may find application in compact, polarization sensitive, multi-wavelength plasmonic detectors.


Design and Implementation of Plasmonic Cavities in Thin Metallic Films

Design and Implementation of Plasmonic Cavities in Thin Metallic Films
Author: John Liu
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Design and Implementation of Plasmonic Cavities in Thin Metallic Films Book in PDF, ePub and Kindle

Metals contain a sea of free electrons that are easily driven into collective oscillation by electromagnetic waves. As a result, small metal objects can serve as antennas that strongly scatter light. At the same time, extended metal surfaces have been shown to guide surface plasmons (photons bound to surface charge oscillations) that can confine light to deep sub-wavelength dimensions. Patterned metallic films can combine both the scattering and guiding properties of metals to capture and concentrate light from free space into a photodetector or to control the emission of light from emitting media. We first consider the wide range of functions that can be achieved in directing light emission with the help of smooth metallic films. We then describe how light interacts with patterned metallic films and present a detailed study of the effect of a single metallic groove on the scattering and surface plasmon guiding processes. This has lead to our discovery of new, exciting opportunities for dense optical functionality with non-periodically patterned metallic films. We show that a micronscale structure consisting of just two grooves in a metal film can lead to directional light coupling and wavelength splitting with a contrast ratio of 3:1. Our understanding is then generalized giving rise to a fast, simplified optimization of large non-periodic structures for a desired function. Lastly we consider the efficiency and bandwidth limits of coupling light through sub-wavelength slits for photodetection. We outline a path to efficient, spectrally selective detection which may find application in compact, polarization sensitive, multi-wavelength plasmonic detectors.


Analysis, Design, and Manufacture of Thin-film Plasmonic Materials

Analysis, Design, and Manufacture of Thin-film Plasmonic Materials
Author: James Peter Dolas
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN: 9781339230863

Download Analysis, Design, and Manufacture of Thin-film Plasmonic Materials Book in PDF, ePub and Kindle

Investigation of analysis methods of plasmonic crystals and metamaterials using traditional optical analysis, Planewave Expansion Method, and multiphysics software was conducted. 1D and 2D plasmonic crystals were studied and simulated for field enhancement. The sub-diffraction superlens and anisotropic lenses based on metamaterials were studied and an anisotropic lens was designed through computation. Comparison to existing work was made for evaluation of use in sub-diffraction limit nano-lithography. Investigation of manufacturing methods for thin-film-based plasmonic materials was carried-out. Ultra-flat metal methods involving template-stripping were used for superior surface performance key in plasmonic applications. Template-stripping through metal diffusion bonding and adhesive bonding were investigated, discussed, and employed with patterned ultra-flat metal films.


Multispectral Image Sensors Using Metasurfaces

Multispectral Image Sensors Using Metasurfaces
Author: Xin He
Publisher: Springer Nature
Total Pages: 122
Release: 2021-12-03
Genre: Science
ISBN: 9811675155

Download Multispectral Image Sensors Using Metasurfaces Book in PDF, ePub and Kindle

This book presents how metasurfaces are exploited to develop new low-cost single sensor based multispectral cameras. Multispectral cameras extend the concept of conventional colour cameras to capture images with multiple color bands and with narrow spectral passbands. Images from a multispectral camera can extract significant amount of additional information that the human eye or a normal camera fails to capture and thus have important applications in precision agriculture, forestry, medicine, object identifications, and classifications. Conventional multispectral cameras are made up of multiple image sensors each externally fitted with a narrow passband wavelength filters, optics and multiple electronics. The need for multiple sensors for each band results in a number of problems such as being bulky, power hungry and suffering from image co-registration problems which in turn limits their wide usage. The above problems can be eliminated if a multispectral camera is developed using one single image sensor.​


Plasmon Logic Gates Designed by Modal Engineering of 2-dimensional Crystalline Metal Cavities

Plasmon Logic Gates Designed by Modal Engineering of 2-dimensional Crystalline Metal Cavities
Author: Upkar Kumar
Publisher:
Total Pages: 144
Release: 2017
Genre:
ISBN:

Download Plasmon Logic Gates Designed by Modal Engineering of 2-dimensional Crystalline Metal Cavities Book in PDF, ePub and Kindle

The main objective of this PhD work is to design, fabricate and characterize plasmonic devices based on highly crystalline metallic cavities for the two-dimensional information transfer and logic gate operations. First, we thoroughly characterize the optical response of ultra-thin gold colloidal cavities of sub-micronic size (400 to 900 nm) by dark- field spectroscopy (Fig. 1a). The dispersion of the high order plasmonic resonances of the cavities is measured and compared with a good agreement to simulations obtained with a numerical based on the Green Dyadic Method (GDM). We further extend our experiments to systematically tune the spectral responses of these colloidal nanoprisms in vicinity of metallic thin film substrates. A comprehensive study of these sub-micronic size cavity in bowtie antenna configuration is performed. We show a polarization-dependent field enhancement and a nanoscale field confinement at specific locations in these bowtie antennas. We systematically study the effects that could potentially affect the plasmonic resonances by non-linear photon luminescence microscopy, which has proved to be an efficient tool to observe the surface plasmon local density of states (SPLDOS). Inparticular, we show that an effective spatially and spectrally tuning of the high order plasmonic resonances can be achieved by the modification of the substrate (dielectric or metallic), by the controlled insertion of a defect inside a cavity or by the weak electromagnetic coupling between two adjacent cavities. The rational tailoring of the spatial distribution of the 2D confined resonances was applied to the design of devices with tunable plasmon transmittance between two connected cavities. The specific geometries are produced by focused ion milling crystalline gold platelets. The devices are characterized by non-linear luminescence mapping in confocal and leakage radiation microscopy techniques. The latter offers a unique way to observe propagating SPP signal over a 2D plasmonic cavity. We demonstrate the polarization-dependent mode-mediated transmittance for devices withadequate symmetry. The results are faithfully reproduced with our simulation tool based on Green dyadic method. Finally, we extend our approach to the design and fabrication of a reconfigurable logic gate device with multiple inputs and outputs. We demonstrate that 10 out of the possible 12 2-input 1-output logic gates can be implemented on the same structure by choosing the two input and the one output points. We also demonstrate reconfiguration of the device by changing polarization of the incident beam, set of input locations and threshold of the non-linear luminescence readout signal.


Quantum Plasmonics

Quantum Plasmonics
Author: Sergey I. Bozhevolnyi
Publisher: Springer
Total Pages: 338
Release: 2016-11-26
Genre: Science
ISBN: 3319458205

Download Quantum Plasmonics Book in PDF, ePub and Kindle

This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.


Plasmonic Effects in Metal-semiconductor Nanostructures

Plasmonic Effects in Metal-semiconductor Nanostructures
Author: Alexey A. Toropov
Publisher: Oxford University Press, USA
Total Pages: 385
Release: 2015
Genre: Science
ISBN: 0199699313

Download Plasmonic Effects in Metal-semiconductor Nanostructures Book in PDF, ePub and Kindle

One of the most promising trends in modern nanophotonics is the employment of plasmonic effects in the engineering of advanced device nanostructures. This book implements the binocular vision of such a complex metal-semiconductor system, examining both the constituents and reviewing the characteristics of promising constructive materials.


Optical Properties of Condensed Matter and Applications

Optical Properties of Condensed Matter and Applications
Author: Jai Singh
Publisher: John Wiley & Sons
Total Pages: 451
Release: 2006-10-02
Genre: Technology & Engineering
ISBN: 9780470021934

Download Optical Properties of Condensed Matter and Applications Book in PDF, ePub and Kindle

Following a semi-quantitative approach, this book presents asummary of the basic concepts, with examples and applications, andreviews recent developments in the study of optical properties ofcondensed matter systems. Key Features: Covers basic knowledge as well as application topics Includes theory, experimental techniques and current anddeveloping applications Timely and useful contribution to the literature Written by internationally respected contributors working inphysics and electrical engineering departments and governmentlaboratories