Computing With Memory For Energy Efficient Robust Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computing With Memory For Energy Efficient Robust Systems PDF full book. Access full book title Computing With Memory For Energy Efficient Robust Systems.

Computing with Memory for Energy-Efficient Robust Systems

Computing with Memory for Energy-Efficient Robust Systems
Author: Somnath Paul
Publisher: Springer Science & Business Media
Total Pages: 210
Release: 2013-09-07
Genre: Technology & Engineering
ISBN: 1461477980

Download Computing with Memory for Energy-Efficient Robust Systems Book in PDF, ePub and Kindle

This book analyzes energy and reliability as major challenges faced by designers of computing frameworks in the nanometer technology regime. The authors describe the existing solutions to address these challenges and then reveal a new reconfigurable computing platform, which leverages high-density nanoscale memory for both data storage and computation to maximize the energy-efficiency and reliability. The energy and reliability benefits of this new paradigm are illustrated and the design challenges are discussed. Various hardware and software aspects of this exciting computing paradigm are described, particularly with respect to hardware-software co-designed frameworks, where the hardware unit can be reconfigured to mimic diverse application behavior. Finally, the energy-efficiency of the paradigm described is compared with other, well-known reconfigurable computing platforms.


Your Genes, Your Choices

Your Genes, Your Choices
Author: Catherine Baker
Publisher:
Total Pages: 96
Release: 1996
Genre: DNA.
ISBN: 9780871686367

Download Your Genes, Your Choices Book in PDF, ePub and Kindle

Program discusses the Human Genome Project, the science behind it, and the ethical, legal and social issues raised by the project.


Energy Efficient High Performance Processors

Energy Efficient High Performance Processors
Author: Jawad Haj-Yahya
Publisher: Springer
Total Pages: 165
Release: 2018-04-04
Genre: Technology & Engineering
ISBN: 9789811085536

Download Energy Efficient High Performance Processors Book in PDF, ePub and Kindle

This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modem processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.


The Internet of Things and Big Data Analytics

The Internet of Things and Big Data Analytics
Author: Pethuru Raj
Publisher: CRC Press
Total Pages: 328
Release: 2020-06-07
Genre: Computers
ISBN: 1000057399

Download The Internet of Things and Big Data Analytics Book in PDF, ePub and Kindle

This book comprehensively conveys the theoretical and practical aspects of IoT and big data analytics with the solid contributions from practitioners as well as academicians. This book examines and expounds the unique capabilities of the big data analytics platforms in capturing, cleansing and crunching IoT device/sensor data in order to extricate actionable insights. A number of experimental case studies and real-world scenarios are incorporated in this book in order to instigate our book readers. This book Analyzes current research and development in the domains of IoT and big data analytics Gives an overview of latest trends and transitions happening in the IoT data analytics space Illustrates the various platforms, processes, patterns, and practices for simplifying and streamlining IoT data analytics The Internet of Things and Big Data Analytics: Integrated Platforms and Industry Use Cases examines and accentuates how the multiple challenges at the cusp of IoT and big data can be fully met. The device ecosystem is growing steadily. It is forecast that there will be billions of connected devices in the years to come. When these IoT devices, resource-constrained as well as resource-intensive, interact with one another locally and remotely, the amount of multi-structured data generated, collected, and stored is bound to grow exponentially. Another prominent trend is the integration of IoT devices with cloud-based applications, services, infrastructures, middleware solutions, and databases. This book examines the pioneering technologies and tools emerging and evolving in order to collect, pre-process, store, process and analyze data heaps in order to disentangle actionable insights.


A Design Methodology for Robust, Energy-efficient, Application-aware Memory Systems

A Design Methodology for Robust, Energy-efficient, Application-aware Memory Systems
Author: Subho Chatterjee
Publisher:
Total Pages:
Release: 2012
Genre: Computer storage devices
ISBN:

Download A Design Methodology for Robust, Energy-efficient, Application-aware Memory Systems Book in PDF, ePub and Kindle

Memory design is a crucial component of VLSI system design from area, power and performance perspectives. To meet the increasingly challenging system specifications, architecture, circuit and device level innovations are required for existing memory technologies. Emerging memory solutions are widely explored to cater to strict budgets. This thesis presents design methodologies for custom memory design with the objective of power-performance benefits across specific applications. Taking example of STTRAM (spin transfer torque random access memory) as an emerging memory candidate, the design space is explored to find optimal energy design solution. A thorough thermal reliability study is performed to estimate detection reliability challenges and circuit solutions are proposed to ensure reliable operation. Adoption of the application-specific optimal energy solution is shown to yield considerable energy benefits in a read-heavy application called MBC (memory based computing). Circuit level customizations are studied for the volatile SRAM (static random access memory) memory, which will provide improved energy-delay product (EDP) for the same MBC application. Memory design has to be aware of upcoming challenges from not only the application nature but also from the packaging front. Taking 3D die-folding as an example, SRAM performance shift under die-folding is illustrated. Overall the thesis demonstrates how knowledge of the system and packaging can help in achieving power efficient and high performance memory design.


Content-aware Memory Systems for High-performance, Energy-efficient Data Movement

Content-aware Memory Systems for High-performance, Energy-efficient Data Movement
Author: Shibo Wang
Publisher:
Total Pages: 173
Release: 2017
Genre:
ISBN:

Download Content-aware Memory Systems for High-performance, Energy-efficient Data Movement Book in PDF, ePub and Kindle

"Power dissipation and limited memory bandwidth are significant bottlenecks in virtually all computer systems, from datacenters to mobile devices. The memory subsystem is responsible for a significant and growing fraction of the total system energy due to data movement throughout the memory hierarchy. These energy and performance problems become more severe as emerging data-intensive applications place a larger fraction of the data in memory, and require substantial data processing and transmission capabilities. As a result, it is critical to architect novel, energy- and bandwidth-efficient memory systems and data access mechanisms for future computer systems. Existing memory systems are largely oblivious to the contents of the transferred or stored data. However, the transmission and storage costs of data with different contents often differ, which creates new possibilities to reduce the attendant data movement overheads. This dissertation investigates both content aware transmission and storage mechanisms in conventional DRAM systems, such as DDRx, and emerging memory architectures, such as Hybrid Memory Cube (HMC). Content aware architectural techniques are developed to improve the performance and energy efficiency of the memory hierarchy. The dissertation first presents a new energy-efficient data encoding mechanism based on online data clustering that exploits asymmetric data movement costs. One promising way of reducing the data movement energy is to design the interconnect such that the transmission of 0s is considerably cheaper than that of 1s. Given such an interconnect with asymmetric transmission costs, data movement energy can be reduced by encoding the transmitted data such that the number of 1s in each transmitted codeword is minimized. In the proposed coding scheme, the transmitted data blocks are dynamically grouped into clusters based on the similarities between their binary representations. Each cluster has a center with a bit pattern close to those of the data blocks that belong to that cluster. Each transmitted data block is expressed as the bitwise XOR between the nearest cluster center and a sparse residual with a small number of 1s. The data movement energy is minimized by sending the sparse residual along with an identifier that specifies which cluster center to use in decoding the transmitted data. At runtime, the proposed approach continually updates the cluster centers based on the observed data to adapt to phase changes. By dynamically learning and adjusting the cluster centers, the Hamming distance between each data block and the nearest cluster center can be significantly reduced. As a result, the total number of 1s in the transmitted residual is lowered, leading to substantial savings in data movement energy. The dissertation then introduces content aware refresh - a novel DRAM refresh method that reduces the refresh rate by exploiting the unidirectional nature of DRAM retention errors: assuming that a logical 1 and 0 respectively are represented by the presence and absence of charge, 1-to-0 failures dominate the retention errors. As a result, in a DRAM system that uses a block error correcting code (ECC) to protect memory from errors, blocks with fewer 1s exhibit a lower probability of encountering an uncorrectable error. Such blocks can attain a specified reliability target with a refresh rate lower than what is required for a block with all 1s. Leveraging this key insight, and without compromising memory reliability, the proposed content aware refresh mechanism refreshes memory blocks with fewer 1s less frequently. In the proposed content-aware refresh mechanism, the refresh rate of a refresh group - a group of DRAM rows refreshed together?is decided based on the worst case ECC block in that group, which is the block with the greatest number of 1s. In order to keep the overhead of tracking multiple refresh rates manageable, multiple refresh groups are dynamically arranged into one of a predefined number of refresh bins and refreshed at the same rate. To reduce the number of refresh operations, both the refresh rates of the bins and the refresh group-to-bin assignments are adaptively changed at runtime. By tailoring the refresh rate to the actual content of a memory block rather than assuming a worst case data pattern, the proposed content aware refresh technique effectively avoids unnecessary refresh operations and significantly improves the performance and energy efficiency of DRAM systems. Finally, the dissertation examines a novel HMC power management solution that enables energy-efficient HMC systems with erasure codes. The key idea is to encode multiple blocks of data in a single coding block that is distributed among all of the HMC modules in the system, and to store the resulting check bits in a dedicated, always-on HMC. The inaccessible data that are stored in a sleeping HMC module can be reconstructed by decoding a subset of the remaining memory blocks retrieved from other active HMCs, rather than waiting for the sleeping HMC module to become active. A novel data selection policy is used to decide which data to encode at runtime, significantly increasing the probability of reconstructing otherwise inaccessible data. The coding procedure is optimized by leveraging the near memory computing capability of the HMC logic layer. This approach makes it possible to tolerate the latency penalty incurred when switching an HMC between active and sleep modes, thereby enabling a power-capped HMC system."--Pages xi-xiv.


Dependable Embedded Systems

Dependable Embedded Systems
Author: Jörg Henkel
Publisher: Springer Nature
Total Pages: 606
Release: 2020-12-09
Genre: Technology & Engineering
ISBN: 303052017X

Download Dependable Embedded Systems Book in PDF, ePub and Kindle

This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems.


Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design
Author: Nan Zheng
Publisher: John Wiley & Sons
Total Pages: 389
Release: 2019-10-18
Genre: Computers
ISBN: 1119507405

Download Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design Book in PDF, ePub and Kindle

Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.


Neuromorphic Computing

Neuromorphic Computing
Author:
Publisher: BoD – Books on Demand
Total Pages: 298
Release: 2023-11-15
Genre: Computers
ISBN: 1803561432

Download Neuromorphic Computing Book in PDF, ePub and Kindle

Dive into the cutting-edge world of Neuromorphic Computing, a groundbreaking volume that unravels the secrets of brain-inspired computational paradigms. Spanning neuroscience, artificial intelligence, and hardware design, this book presents a comprehensive exploration of neuromorphic systems, empowering both experts and newcomers to embrace the limitless potential of brain-inspired computing. Discover the fundamental principles that underpin neural computation as we journey through the origins of neuromorphic architectures, meticulously crafted to mimic the brain’s intricate neural networks. Unlock the true essence of learning mechanisms – unsupervised, supervised, and reinforcement learning – and witness how these innovations are shaping the future of artificial intelligence.