Computational Methods For Understanding Bacterial And Archaeal Genomes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Methods For Understanding Bacterial And Archaeal Genomes PDF full book. Access full book title Computational Methods For Understanding Bacterial And Archaeal Genomes.

Computational Methods for Understanding Bacterial and Archaeal Genomes

Computational Methods for Understanding Bacterial and Archaeal Genomes
Author: Ying Xu
Publisher: World Scientific
Total Pages: 494
Release: 2008
Genre: Medical
ISBN: 1860949827

Download Computational Methods for Understanding Bacterial and Archaeal Genomes Book in PDF, ePub and Kindle

Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative view of bacterial and archaeal genomes, and how information is encoded differently in them, is also presented. Combining theoretical discussions and computational techniques, the book serves as a valuable introductory textbook for graduate-level microbial genomics and informatics courses.


Computational Methods for Understanding Bacterial and Archaeal Genomes

Computational Methods for Understanding Bacterial and Archaeal Genomes
Author: Ying Xu
Publisher: Imperial College Press
Total Pages: 494
Release: 2008
Genre: Science
ISBN: 1860949835

Download Computational Methods for Understanding Bacterial and Archaeal Genomes Book in PDF, ePub and Kindle

Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative view of bacterial and archaeal genomes, and how information is encoded differently in them, is also presented. Combining theoretical discussions and computational techniques, the book serves as a valuable introductory textbook for graduate-level microbial genomics and informatics courses.


Sequence — Evolution — Function

Sequence — Evolution — Function
Author: Eugene V. Koonin
Publisher: Springer Science & Business Media
Total Pages: 482
Release: 2013-06-29
Genre: Science
ISBN: 1475737831

Download Sequence — Evolution — Function Book in PDF, ePub and Kindle

Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.


Computational Methods for Genome-wide Non-coding RNA Discovery and Analysis

Computational Methods for Genome-wide Non-coding RNA Discovery and Analysis
Author: Shaojie Zhang
Publisher:
Total Pages: 108
Release: 2007
Genre:
ISBN:

Download Computational Methods for Genome-wide Non-coding RNA Discovery and Analysis Book in PDF, ePub and Kindle

The discovery of novel non-coding RNAs has been among the most exciting recent developments in Biology, yet, many more remain undiscovered. It has been hypothesized that there is in fact an abundance of functional non-coding RNAs (ncRNAs) with various catalytic and regulatory functions. Computational methods tailored specifically for ncRNA discovery are being actively developed. As the inherent signal for ncRNA is weaker than that for protein coding genes, comparative methods offer the most promising approach. In this dissertation, we address several open issues and problems on computational methods for genome wide non-coding RNA discovery and analysis: (1) We first consider the following problem: Given an RNA sequence with a known secondary structure, efficiently detect all structural homologs in a genomic database by computing the sequence and structure similarity to the query. Our approach, based on structural filters that eliminate a large portion of the database, while retaining the true homologs, allows us to search a typical bacterial genome in minutes on a standard PC. This results is two orders of magnitude better than currently available software for the problem. (2) We formalize the concept of a filter and provide figures of merit that allow comparison between filters. We design efficient sequence based filters that dominate the current state-of-the-art HMM filters. We provide a new formulation of the covariance model that allows speeding up RNA alignment. We demonstrate the power of our approach on both synthetic data and real bacterial genomes. We then apply our algorithm to the detection of novel riboswitch elements from the whole bacterial and archaeal genomes and environmental sequence data. Our results point to a number of novel riboswitch candidates, and include genomes that were not previously known to contain riboswitches. (3) We propose a novel framework to predict the common secondary structure for unaligned RNA sequences. By matching putative stacks in RNA sequences, we make use of both primary sequence information and thermodynamic stability for prediction at the same time. We show that our method can predict the correct common RNA secondary structures even when we are only given a limited number of unaligned RNA sequences, and it outperforms current algorithms in sensitivity and accuracy. Together these contributions made efforts toward genome wide ncRNA discovery for exploring the modern RNA world.


Computational Methods for the Analysis of Genomic Data and Biological Processes

Computational Methods for the Analysis of Genomic Data and Biological Processes
Author: Francisco A. Gómez Vela
Publisher: MDPI
Total Pages: 222
Release: 2021-02-05
Genre: Medical
ISBN: 3039437712

Download Computational Methods for the Analysis of Genomic Data and Biological Processes Book in PDF, ePub and Kindle

In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality.


Computing for Comparative Microbial Genomics

Computing for Comparative Microbial Genomics
Author: David Wayne Ussery
Publisher: Springer Science & Business Media
Total Pages: 272
Release: 2009-02-26
Genre: Science
ISBN: 1848002548

Download Computing for Comparative Microbial Genomics Book in PDF, ePub and Kindle

Overview and Goals This book describes how to visualize and compare bacterial genomes. Sequencing technologies are becoming so inexpensive that soon going for a cup of coffee will be more expensive than sequencing a bacterial genome. Thus, there is a very real and pressing need for high-throughput computational methods to compare hundreds and thousands of bacterial genomes. It is a long road from molecular biology to systems biology, and in a sense this text can be thought of as a path bridging these ? elds. The goal of this book is to p- vide a coherent set of tools and a methodological framework for starting with raw DNA sequences and producing fully annotated genome sequences, and then using these to build up and test models about groups of interacting organisms within an environment or ecological niche. Organization and Features The text is divided into four main parts: Introduction, Comparative Genomics, Transcriptomics and Proteomics, and ? nally Microbial Communities. The ? rst ? ve chapters are introductions of various sorts. Each of these chapters represents an introduction to a speci? c scienti? c ? eld, to bring all readers up to the same basic level before proceeding on to the methods of comparing genomes. First, a brief overview of molecular biology and of the concept of sequences as biological inf- mation are given.


A First Course in Systems Biology

A First Course in Systems Biology
Author: Eberhard Voit
Publisher: Garland Science
Total Pages: 604
Release: 2017-09-05
Genre: Computers
ISBN: 1351332937

Download A First Course in Systems Biology Book in PDF, ePub and Kindle

A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.


Bacterial Pangenomics

Bacterial Pangenomics
Author: Alessio Mengoni
Publisher: Humana
Total Pages: 268
Release: 2021-05-07
Genre: Science
ISBN: 9781071610985

Download Bacterial Pangenomics Book in PDF, ePub and Kindle

This completely revised edition explores novel discoveries in bacterial genomic research, with a focus on technical and computational improvements as well as methods used for bacterial pangenome analysis, which relies on microbiome studies and metagenomic data. Beginning with up-to-date sequencing methods, the book continues with sections covering methods for deep phylogenetic analysis, the role of metagenomic data in understanding the genomics of the many yet uncultured bacteria, progress in genome-to-phenome inference, as well as computational genomic tools. Written for the highly successful Methods in Molecular Biology series, chapters include the type of practical detail necessary for reproducible results in the lab. Authoritative and up-to-date, Bacterial Pangenomics: Methods and Protocols, Second Edition serves as an ideal guide for both highly qualified investigators in bacterial genomics and for less experienced researchers, including students and teachers, who could use a reference for approaching genomic analysis and genome data.


The New Science of Metagenomics

The New Science of Metagenomics
Author: National Research Council
Publisher: National Academies Press
Total Pages: 170
Release: 2007-06-24
Genre: Science
ISBN: 0309106761

Download The New Science of Metagenomics Book in PDF, ePub and Kindle

Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.