Classical Trajectory Perspective Of Atomic Ionization In Strong Laser Fields PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Classical Trajectory Perspective Of Atomic Ionization In Strong Laser Fields PDF full book. Access full book title Classical Trajectory Perspective Of Atomic Ionization In Strong Laser Fields.

Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields

Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields
Author: Jie Liu
Publisher: Springer Science & Business Media
Total Pages: 88
Release: 2013-09-30
Genre: Science
ISBN: 3642405495

Download Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields Book in PDF, ePub and Kindle

The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.


Advances Of Atoms And Molecules In Strong Laser Fields

Advances Of Atoms And Molecules In Strong Laser Fields
Author: Yunquan Liu
Publisher: World Scientific
Total Pages: 248
Release: 2015-09-29
Genre: Science
ISBN: 9814696404

Download Advances Of Atoms And Molecules In Strong Laser Fields Book in PDF, ePub and Kindle

This volume presents the latest advancements and future perspectives of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to a wide range of quantum systems, with an emphasis on the understanding of ionization, high-harmonic generation, molecular orbital imaging and coherent control phenomena originating from light-matter interactions. The book overviews current research landscape and highlight major scientific trends in AMO physics interfacing with interdisciplinary sciences. It may be particularly interesting for young researchers working on establishing their scientific interests and goals.


A Trajectory Description of Quantum Processes. II. Applications

A Trajectory Description of Quantum Processes. II. Applications
Author: Ángel S. Sanz
Publisher: Springer
Total Pages: 345
Release: 2013-09-13
Genre: Science
ISBN: 3642179746

Download A Trajectory Description of Quantum Processes. II. Applications Book in PDF, ePub and Kindle

Trajectory-based formalisms are an intuitively appealing way of describing quantum processes because they allow the use of "classical" concepts. Beginning as an introductory level suitable for students, this two-volume monograph presents (1) the fundamentals and (2) the applications of the trajectory description of basic quantum processes. This second volume is focussed on simple and basic applications of quantum processes such as interference and diffraction of wave packets, tunneling, diffusion and bound-state and scattering problems. The corresponding analysis is carried out within the Bohmian framework. By stressing its interpretational aspects, the book leads the reader to an alternative and complementary way to better understand the underlying quantum dynamics.


Atoms in Intense Laser Fields

Atoms in Intense Laser Fields
Author: C. J. Joachain
Publisher: Cambridge University Press
Total Pages: 581
Release: 2012
Genre: Science
ISBN: 0521793017

Download Atoms in Intense Laser Fields Book in PDF, ePub and Kindle

A unified account of the rapidly developing field of high-intensity laser-atom interactions, suitable for both graduate students and researchers.


Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons

Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons
Author: P. C. Deshmukh
Publisher: Springer Nature
Total Pages: 284
Release: 2019-09-28
Genre: Science
ISBN: 9811399697

Download Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons Book in PDF, ePub and Kindle

This book comprises selected peer-reviewed papers presented at the 7th Topical Conference of the Indian Society of Atomic and Molecular Physics, jointly held at IISER Tirupati and IIT Tirupati, India. The contributions address current topics of interest in atomic and molecular physics, both from the theoretical and experimental perspective. The major focus areas include quantum collisions, spectroscopy of atomic and molecular clusters, photoionization, Wigner time delay in collisions, laser cooling, Bose-Einstein condensates, atomic clocks, quantum computing, and trapping and manipulation of quantum systems. The book also discusses emerging topics such as ultrafast quantum processes including those at the attosecond time-scale. This book will prove to be a valuable reference for students and researchers working in the field of atomic and molecular physics.


Super-Intense Laser—Atom Physics

Super-Intense Laser—Atom Physics
Author: A. L'Huillier
Publisher: Springer Science & Business Media
Total Pages: 494
Release: 2012-12-06
Genre: Science
ISBN: 1461579635

Download Super-Intense Laser—Atom Physics Book in PDF, ePub and Kindle

The rapid development of powerful pulsed lasers is at the origin of a conside rable interest in studying the response of an atom, a molecule (or a solid) to a strong electromagnetic field. It is now possible to produce at the laboratory scale, ultra-short 13 pulses with a duration of 100 femtoseconds (10- second) and a power of the order 12 of 1 terawatt (10 Watt). Under these conditions, very high peak intensities may be obtained and electric fields exceeding typical electron binding fields in atoms are generated. The interaction of an atom or a molecule with such electromagnetic fields has a highly non-linear character which leads to unexpected phenomena. Amongst them, - above-threshold ionization (ATI) i.e. the absorption of additional photons in excess of the minimal number necessary to overcome the ionization potential and its molecular counterpart, above-threshold dissociation (ATD); - generation of very high harmonics of the driving field; - stabilization of one-electron systems in strong fields. These processes were the main topics of two international meetings which were held in 1989 and 1991 in the United States under the common name SILAP (Super-Intense Laser-Atom Physics).


Super-Intense Laser-Atom Physics IV

Super-Intense Laser-Atom Physics IV
Author: H.G. Muller
Publisher: Springer Science & Business Media
Total Pages: 630
Release: 1996-05-31
Genre: Science
ISBN: 9780792340485

Download Super-Intense Laser-Atom Physics IV Book in PDF, ePub and Kindle

Atoms in strong radiation fields are interesting objects for study, and the research field that concerns itself with this study is a comparatively young one. For a long period after the ~scovery of the photoelectric effect. it was not possible to generate electro magnetic fields that did more than perturb the atom only slightly, and (first-or~er) perturbation theory could perfectly explain what was going on at those low intensities. The development of the pulsed laser bas changed this state of affairs in a rather dramatic way, and fields can be applied that really have a large, or even dominant influence on atomic structure. In the latter case, w~ speak of super-intense fields. Since the interaction between atoms and electromagnetic waves is characterized by many parameters other than the light intensity, such as frequency, iQnization potential, orbit time, etc., it is actually quite difficult to define what is exactly meant by the term 'super-intense'. Obviously the term does not have an absolute meaning, and intensity should always be viewed in relation to other properties of the system. An atom in a radiation field can thus best be described in terms of various ratios of the quantities involved. The nature of the system sometimes drastically changes if the value of one of these parameters exceeds a certain critical value, and the new regime could be called super-intense with respect to that parameter.


Advances in Ultrafast Optics

Advances in Ultrafast Optics
Author: Fei He
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 446
Release: 2018-09-10
Genre: Science
ISBN: 3110304554

Download Advances in Ultrafast Optics Book in PDF, ePub and Kindle

No detailed description available for "Advances in Ultrafast Optics".


Physics 1971-1980

Physics 1971-1980
Author: Stig Lundqvist
Publisher: World Scientific
Total Pages: 622
Release: 1992
Genre: Science
ISBN: 9789810207274

Download Physics 1971-1980 Book in PDF, ePub and Kindle

These volumes are collections of the Nobel Lectures delivered by the prizewinners, together with their biographies, portraits and the presentation speeches for the period 1971 ? 1990. Each Nobel Lecture is based on the work that won the laureate his prize. New biographical data of the laureates, since they were awarded the Nobel Prize, are also included. These volumes of inspiring lectures by outstanding physicists should be on the bookshelf of every keen student, teacher and professor of physics as well as those in related fields.Below is a list of the prizewinners during the period 1971?1980 with a description of the works which won them their prizes: (1971) D GABOR ? for his invention and development of the holographic method; (1972) J BARDEEN, L N COOPER & J R SCHRIEFFER ? for their jointly developed theory of superconductivity, usually called the BCS-theory; (1973) L ESAKI & I GIAEVER ? for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively; B D JOSEPHSON ? for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects; (1974) M RYLE & A HEWISH ? for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars; (1975) A BOHR, B MOTTELSON & J RAINWATER ? for the discovery of the connection between collective motion and particle motion in atomic nuclei and the development of the theory of the structure of the atomic nucleus based on this connection; (1976) B RICHTER & S C C TING ? for their pioneering work in the discovery of a heavy elementary particle of a new kind; (1977) P W ANDERSON, N F MOTT & J H VAN VLECK ? for their fundamental theoretical investigations of the electronic structure of magnetic and disordered systems; (1978) P L KAPITSA ? for his basic inventions and discoveries in the area of low-temperature physics; A A PENZIAS & R W WILSON ? for their discoveries of cosmic microwave background radiation; (1979) S L GLASHOW, A SALAM & S WEINBERG ? for their contributions to the theory of the unified weak and electromagnetic interaction between elementary particles, including inter alia the prediction of the weak neutral current; (1980) J W CRONIN & V L FITCH ? for the discovery of violations of fundamental symmetry principles in the decay of neutral K-mesons.