Bioinformatics In Aquaculture PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Bioinformatics In Aquaculture PDF full book. Access full book title Bioinformatics In Aquaculture.

Fisheries Biotechnology and Bioinformatics

Fisheries Biotechnology and Bioinformatics
Author: C. Judith Betsy
Publisher: Springer Nature
Total Pages: 223
Release: 2023-12-13
Genre: Science
ISBN: 9819969913

Download Fisheries Biotechnology and Bioinformatics Book in PDF, ePub and Kindle

This authored book is focused on SDG 14: Life below water, comprehensively addressing all facets of biotechnology and bioinformatics related to fisheries. It offers an extensive exploration of the detail on structure, function and types of nucleic acids, concepts of gene and genetic code, mutations, and their implications. The book provides essential information on gene regulation and expression in prokaryotes and eukaryotes. Step-by-step descriptions are provided for technologies such as gene transfer, rDNA, transgenic fish production, animal cell culture, hybridoma technology and cryopreservation technology in fishes. Special emphasis has been given to topics like RNA in gene regulation, epigenetics, and DNA and protein sequencing. Various molecular techniques and markers have been discussed in detail. Further, various topics on bioinformatics including different databases, formats, sequence retrieval, manipulation, analysis, primer design, molecular visualization, genomics, and proteomics are also covered. This volume will prove invaluable to aquaculturists, equipping them with essential techniques and protocols. It constitutes essential reading for students enrolled in aquaculture or fisheries courses within tropical and sub-tropical regions.


Bioinformatics in Aquaculture

Bioinformatics in Aquaculture
Author: Zhanjiang (John) Liu
Publisher: John Wiley & Sons
Total Pages: 595
Release: 2017-01-30
Genre: Science
ISBN: 1118782380

Download Bioinformatics in Aquaculture Book in PDF, ePub and Kindle

Bioinformatics derives knowledge from computer analysis of biological data. In particular, genomic and transcriptomic datasets are processed, analysed and, whenever possible, associated with experimental results from various sources, to draw structural, organizational, and functional information relevant to biology. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics in Aquaculture provides the most up to date reviews of next generation sequencing technologies, their applications in aquaculture, and principles and methodologies for the analysis of genomic and transcriptomic large datasets using bioinformatic methods, algorithm, and databases. The book is unique in providing guidance for the best software packages suitable for various analysis, providing detailed examples of using bioinformatic software and command lines in the context of real world experiments. This book is a vital tool for all those working in genomics, molecular biology, biochemistry and genetics related to aquaculture, and computational and biological sciences.


Genomics in Aquaculture to Better Understand Species Biology and Accelerate Genetic Progress

Genomics in Aquaculture to Better Understand Species Biology and Accelerate Genetic Progress
Author: José Manuel Yáñez
Publisher: Frontiers Media SA
Total Pages: 153
Release: 2016-09-15
Genre: Genetics
ISBN: 2889199576

Download Genomics in Aquaculture to Better Understand Species Biology and Accelerate Genetic Progress Book in PDF, ePub and Kindle

From a global perspective aquaculture is an activity related to food production with large potential for growth. Considering a continuously growing population, the efficiency and sustainability of this activity will be crucial to meet the needs of protein for human consumption in the near future. However, for continuous enhancement of the culture of both fish and shellfish there are still challenges to overcome, mostly related to the biology of the cultured species and their interaction with (increasingly changing) environmental factors. Examples of these challenges include early sexual maturation, feed meal replacement, immune response to infectious diseases and parasites, and temperature and salinity tolerance. Moreover, it is estimated that less than 10% of the total aquaculture production in the world is based on populations genetically improved by means of artificial selection. Thus, there is considerable room for implementing breeding schemes aimed at improving productive traits having significant economic impact. By far the most economically relevant trait is growth rate, which can be efficiently improved by conventional genetic selection (i.e. based on breeding values of selection candidates). However, there are other important traits that cannot be measured directly on selection candidates, such as resistance against infectious and parasitic agents and carcass quality traits (e.g. fillet yield and meat color). However, these traits can be more efficiently improved using molecular tools to assist breeding programs by means of marker-assisted selection, using a few markers explaining a high proportion of the trait variation, or genomic selection, using thousands of markers to estimate genomic breeding values. The development and implementation of new technologies applied to molecular biology and genomics, such as next-generation sequencing methods and high-throughput genotyping platforms, are allowing the rapid increase of availability of genomic resources in aquaculture species. These resources will provide powerful tools to the research community and will aid in the determination of the genetic factors involved in several biological aspects of aquaculture species. In this regard, it is important to establish discussion in terms of which strategies will be more efficient to solve the primary challenges that are affecting aquaculture systems around the world. The main objective of this Research Topic is to provide a forum to communicate recent research and implementation strategies in the use of genomics in aquaculture species with emphasis on (1) a better understanding of fish and shellfish biological processes having considerable impact on aquaculture systems; and (2) the efficient incorporation of molecular information into breeding programs to accelerate genetic progress of economically relevant traits.


Biotechnology and Genetics in Fisheries and Aquaculture

Biotechnology and Genetics in Fisheries and Aquaculture
Author: Andy Beaumont
Publisher: John Wiley & Sons
Total Pages: 216
Release: 2010-01-21
Genre: Technology & Engineering
ISBN: 9781444318807

Download Biotechnology and Genetics in Fisheries and Aquaculture Book in PDF, ePub and Kindle

Following the extremely well-received structure of the firstedition, this carefully revised and updated new edition nowincludes much new information of vital importance to those workingand researching in the fisheries and aquaculture industries. Commencing with chapters covering genetic variation and how itcan be measured, the authors then look at genetic structure innatural populations, followed by a new chapter covering genetics inrelation to population size and conservation issues. Geneticvariation of traits and triploids and the manipulation of ploidyare fully covered, and another new chapter is included, entitled'From Genetics to Genomics'. The book concludes with a chaptercovering the impact of genetic engineering in aquaculture. With the inclusion of a wealth of up-to-date information, newtext and figures and the inclusion of a third author, PierreBoudry, the second edition of Biotechnology and Genetics inFisheries and Aquaculture provides an excellent text andreference of great value and use to upper level students andprofessionals working across fish biology, aquatic sciences,fisheries, aquaculture, genetics and biotechnology. Libraries inall universities and research establishments where biologicalsciences, fisheries and aquaculture are studied and taught shouldhave several copies of this excellent new edition on theirshelves. Completely updated, revised and expanded new edition Subject area of ever increasing importance Expanded authorship Commercially useful information for fish breeders


Genomics in Aquaculture

Genomics in Aquaculture
Author: Simon A MacKenzie
Publisher: Academic Press
Total Pages: 306
Release: 2016-07-29
Genre: Technology & Engineering
ISBN: 0128016906

Download Genomics in Aquaculture Book in PDF, ePub and Kindle

Genomics in Aquaculture is a concise, must-have reference that describes current advances within the field of genomics and their applications to aquaculture. Written in an accessible manner for anyone—non-specialists to experts alike—this book provides in-depth coverage of genomics spanning from genome sequencing, to transcriptomics and proteomics. It provides, for ease of learning, examples from key species most relevant to current intensive aquaculture practice. Its coverage of minority species that have a specific biological interest (e.g., Pleuronectiformes) makes this book useful for countries that are developing such species. It is a robust, practical resource that covers foundational, functional, and applied aspects of genomics in aquaculture, presenting the most current information in a field of research that is rapidly growing. Provides the latest scientific methods and technologies to maximize efficiencies for healthy fish production, with summary tables for quick reference Offers an extended glossary of technical and methodological terms to help readers better understand key biological concepts Describes state-of-the-art technologies, such as transcriptomics and epigenomics, currently under development for future perspective of the field Covers minority species that have a specific biological interest (e.g., Pleuronectiformes), making the book useful to countries developing such species


Genomics in Aquaculture to Better Understand Species Biology and Accelerate Genetic Progress

Genomics in Aquaculture to Better Understand Species Biology and Accelerate Genetic Progress
Author:
Publisher:
Total Pages: 0
Release: 2016
Genre:
ISBN:

Download Genomics in Aquaculture to Better Understand Species Biology and Accelerate Genetic Progress Book in PDF, ePub and Kindle

From a global perspective aquaculture is an activity related to food production with large potential for growth. Considering a continuously growing population, the efficiency and sustainability of this activity will be crucial to meet the needs of protein for human consumption in the near future. However, for continuous enhancement of the culture of both fish and shellfish there are still challenges to overcome, mostly related to the biology of the cultured species and their interaction with (increasingly changing) environmental factors. Examples of these challenges include early sexual maturation, feed meal replacement, immune response to infectious diseases and parasites, and temperature and salinity tolerance. Moreover, it is estimated that less than 10% of the total aquaculture production in the world is based on populations genetically improved by means of artificial selection. Thus, there is considerable room for implementing breeding schemes aimed at improving productive traits having significant economic impact. By far the most economically relevant trait is growth rate, which can be efficiently improved by conventional genetic selection (i.e. based on breeding values of selection candidates). However, there are other important traits that cannot be measured directly on selection candidates, such as resistance against infectious and parasitic agents and carcass quality traits (e.g. fillet yield and meat color). However, these traits can be more efficiently improved using molecular tools to assist breeding programs by means of marker-assisted selection, using a few markers explaining a high proportion of the trait variation, or genomic selection, using thousands of markers to estimate genomic breeding values. The development and implementation of new technologies applied to molecular biology and genomics, such as next-generation sequencing methods and high-throughput genotyping platforms, are allowing the rapid increase of availability of genomic resources in aquaculture species. These resources will provide powerful tools to the research community and will aid in the determination of the genetic factors involved in several biological aspects of aquaculture species. In this regard, it is important to establish discussion in terms of which strategies will be more efficient to solve the primary challenges that are affecting aquaculture systems around the world. The main objective of this Research Topic is to provide a forum to communicate recent research and implementation strategies in the use of genomics in aquaculture species with emphasis on (1) a better understanding of fish and shellfish biological processes having considerable impact on aquaculture systems; and (2) the efficient incorporation of molecular information into breeding programs to accelerate genetic progress of economically relevant traits.


Functional Genomics in Aquaculture

Functional Genomics in Aquaculture
Author: Marco Saroglia
Publisher: John Wiley & Sons
Total Pages: 435
Release: 2012-05-25
Genre: Technology & Engineering
ISBN: 1118350014

Download Functional Genomics in Aquaculture Book in PDF, ePub and Kindle

Genomics has revolutionized biological research over the course of the last two decades. Genome maps of key agricultural species have offered increased understanding of the structure, organization, and evolution of animal genomes. Building upon this foundation, researchers are now emphasizing research on genome function. Published with the World Aquaculture Society, Functional Genomics in Aquaculture looks at the advances in this field as they directly relate to key traits and species in aquaculture production. Functional Genomics in Aquaculture opens with two chapters that provide a useful general introduction to the field of functional genomics. The second section of the book focuses on key production traits such as growth, development, reproduction, nutrition, and physiological response to stress and diseases. The final five chapters focus on a variety of key aquaculture species. Examples looking at our understanding of the functional genomes of salmonids, Mediterranean sea bass, Atlantic cod, catfish, shrimp, and molluscs, are included in the book. Providing valuable insights and discoveries into the functional genomes of finfish and shellfish species, Functional Genomics in Aquaculture, will be an invaluable resource to researchers and professionals in aquaculture, genetics, and animal science.


Aquaculture Genome Technologies

Aquaculture Genome Technologies
Author: Zhanjiang (John) Liu
Publisher: John Wiley & Sons
Total Pages: 579
Release: 2008-02-28
Genre: Technology & Engineering
ISBN: 0470276339

Download Aquaculture Genome Technologies Book in PDF, ePub and Kindle

Genomics is a rapidly growing scientific field with applications ranging from improved disease resistance to increased rate of growth. Aquaculture Genome Technologies comprehensively covers the field of genomics and its applications to the aquaculture industry. This volume looks to bridge the gap between a basic understanding of genomic technology to its practical use in the aquaculture industry.


Gene Expression and Manipulation in Aquatic Organisms

Gene Expression and Manipulation in Aquatic Organisms
Author: S. J. Ennion
Publisher: Cambridge University Press
Total Pages: 232
Release: 1996-06-20
Genre: Nature
ISBN: 9780521570039

Download Gene Expression and Manipulation in Aquatic Organisms Book in PDF, ePub and Kindle

The techniques of molecular biology offer a powerful means of investigating and controlling the genetic basis of mechanisms operating in living organisms. The development of these techniques in aquatic animals has now reached the stage where important questions relating to growth, development and adaptation to the environment can be addressed at the level of gene expression, and the introduction and expression of novel genes achieved. This volume presents some of the most exciting advances in this rapidly expanding area, with contributions on the evolution of adaptation to low temperature, adaptation to short-term fluctuations in temperature and salinity, gene expression during growth and development, myosin polymorphism and the generation of transgenic fish. As such, it will be of interest to all those working in the fields of marine and freshwater biology and also to those working in aquaculture.