Behavior Of Reinforced Concrete Columns Subjected To Cyclic Axial And Lateral Load Reversals PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Behavior Of Reinforced Concrete Columns Subjected To Cyclic Axial And Lateral Load Reversals PDF full book. Access full book title Behavior Of Reinforced Concrete Columns Subjected To Cyclic Axial And Lateral Load Reversals.

Normal-strength and High-strength Concrete Columns Under Cyclic Axial Load and Biaxial Moment

Normal-strength and High-strength Concrete Columns Under Cyclic Axial Load and Biaxial Moment
Author: Mehdi Zarei
Publisher:
Total Pages: 151
Release: 2016
Genre:
ISBN:

Download Normal-strength and High-strength Concrete Columns Under Cyclic Axial Load and Biaxial Moment Book in PDF, ePub and Kindle

The technique of using Carbon Fiber Reinforced Polymer (CFRP) materials to repair and strengthen various concrete members has become popular in the structural retrofitting field as an effective way to enhance the strength and ductility of concrete members due to its superior mechanical properties. In this study a method was introduced to study the behavior of concrete columns with and without CFRP jackets under constant axial load and variable lateral load. The lateral load was applied monotonically and cyclically. To predict the behavior of concrete columns under monotonic and cyclic compressive loadings, a computer code was developed to produce the moment-curvature diagram for concrete sections. The moment-curvature diagram was then input in SAP2000 to study the behavior of reinforced concrete columns. The result of this analysis was found to correlate with experimental data well. The behavior of high-strength concrete (HSC) columns having various properties and subjected to a variety of loading conditions has been the topic of considerable investigation. Of particular significance in this area is the behavior of HSC columns under cyclic compressive load with bidirectional eccentricity. For the experimental investigation, tests of six square slender HSC columns were conducted under stroke control to achieve both ascending and descending branches of the load-deformation curves. Analysis of HSC columns subjected to cyclic axial compression with bidirectional eccentricity was approached from the standpoint of a three-dimensional problem. A computer program based on the extended finite segment method and accounting for geometrical nonlinearity has been proposed here to predict the load-deflection curves of HSC columns under cyclical loading. The HSC stress-strain relationship obtained by parametric study and experimental investigation into the behavior of concrete under cyclical load history has been incorporated into the numerical procedure. The presented computer analysis results have been compared with the experimental data, and a satisfactory agreement was attained for both the ascending and descending branches of the load-deformation curves.


Modeling the Behavior of Lightly Reinforced Concrete Columns Subjected to Lateral Loads

Modeling the Behavior of Lightly Reinforced Concrete Columns Subjected to Lateral Loads
Author: Eric John Setzler
Publisher:
Total Pages: 404
Release: 2005
Genre: Columns, Concrete
ISBN:

Download Modeling the Behavior of Lightly Reinforced Concrete Columns Subjected to Lateral Loads Book in PDF, ePub and Kindle

Abstract: Prior studies have shown that many reinforced concrete buildings located in seismically active regions do not have the necessary lateral strength and ductility to perform adequately in earthquakes. In particular, it has been noted that reinforced concrete columns with poor transverse reinforcement are susceptible to shear failure and loss of axial capacity under cyclic lateral loads. The research reported here is focused on modeling the lateral deformation behavior of lightly reinforced concrete columns subjected to lateral loads. Lateral deformations in a column are comprised of three parts: flexural, reinforcement slip, and shear deformations. The monotonic response for each of these deformations was modeled separately. Flexural deformations were modeled using moment-curvature analysis and a plastic hinge model. A review of existing models for reinforcement slip was completed, and an existing model was modified based on experimental data and a parametric study. A comparison of models showed that the proposed slip model performs well in terms of accuracy and efficiency. A shear model was adopted from a previous study, and combined with an available computer program to predict shear behavior in this study. These three component models were found to predict the lateral response envelopes acceptably well for several sets of experimental data. A model for the overall lateral force-deformation relationship of reinforced concrete columns was created by combining the effects of each of the component models. The behavior of a column is classified into one of five categories based on a comparison of the shear, yield, and flexural strengths. The expected behavior in each category determines rules that govern the combination of the deformation components. For columns that are susceptible to shear failure after the onset of flexural failure, the response envelope is modified based on an available shear capacity model. An axial capacity model is also employed for the prediction of ultimate deformations. The proposed model was compared with experimental data from 37 column tests by various researchers. It was found that the classification system employed in the model was successful in representing column behavior. Overall, the model did a reasonable job of predicting the lateral response envelope for the columns in the test database. The model predicted the peak lateral strength well, and successfully represented the onset of shear failure in columns initially failing in flexure.


Behavior of Concrete and Slender Reinforced Concrete Columns Under Cyclic Axial Compression with Bidirectional Eccentricities

Behavior of Concrete and Slender Reinforced Concrete Columns Under Cyclic Axial Compression with Bidirectional Eccentricities
Author: Byong Youl Bahn
Publisher:
Total Pages: 302
Release: 1993
Genre: Axial loads
ISBN:

Download Behavior of Concrete and Slender Reinforced Concrete Columns Under Cyclic Axial Compression with Bidirectional Eccentricities Book in PDF, ePub and Kindle

A rational analysis of reinforced concrete (R/C) structures requires satisfactory modeling of the behavior of concrete under general loading patterns. The behavioral characteristics of concrete dominantly depends upon its load history. For the study of concrete behavior, parametric study and experimental investigation into the behavior of concrete under load history of random cycles are performed. Through parametric study, the applicability of the previous concrete models is examined and a physically motivated modeling for the cyclic stress-strain relationships is proposed. The present modeling of concrete under general cyclic loading is initiated to provide substantial applicability, flexibility of mathematical expressions and furthermore to describe the behavior of random cycles. For the experimental study of concrete subjected to cyclic axial compressions, tests of 3 in. by 6 in. concrete cylinders are conducted under four different loading regimes to determine the major experimental parameters for the proposed analytical expressions. The model developed is based on the results of parametric study and experimental data obtained for the present study. The validity of the proposed general cyclic model is confirmed through a comparison of the experimental results and simulated behavior of the model. Furthermore, the analytical model proposed has been idealized and incorporated into the procedures in analyzing RIC columns. The behavior of R/C columns having various properties and subjected to a variety of loading conditions have been the topics of considerable investigation. Of particular significance in the area of unexplored problems is the behavior of R/C columns under cyclic compressive load. It should be noted that cyclic loads with bidirectional eccentricities considered are in the longitudinal direction, and not in the transverse direction, with respect to the column axis. For the experimental investigation, tests of four foot long columns are conducted under stroke control to achieve both ascending and descending branches of the load-deformation curves. Analysis of RC columns subjected to cyclic axial compressions with bidirectional eccentricities should be approached from the standpoint of a three dimensional problem. A numerical procedure based on extended finite segment method is proposed here to predict the ultimate load, deflections and moment-curvature of experimental results. It is found that the proposed numerical analysis can reasonably simulate the loading and unloading behavior of R/C columns under combined biaxial bending moments and axial compressions.