Astrophysics Processes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Astrophysics Processes PDF full book. Access full book title Astrophysics Processes.

Astrophysics Processes

Astrophysics Processes
Author: Hale Bradt
Publisher: Cambridge University Press
Total Pages: 504
Release: 2008-09-25
Genre: Science
ISBN: 1139469584

Download Astrophysics Processes Book in PDF, ePub and Kindle

Bridging the gap between physics and astronomy textbooks, this book provides step-by-step physical and mathematical development of fundamental astrophysical processes underlying a wide range of phenomena in stellar, galactic, and extragalactic astronomy. The book has been written for upper-level undergraduates and beginning graduate students, and its strong pedagogy ensures solid mastery of each process and application. It contains over 150 tutorial figures, numerous examples of astronomical measurements, and 201 exercises. Topics covered include the Kepler–Newton problem, stellar structure, binary evolution, radiation processes, special relativity in astronomy, radio propagation in the interstellar medium, and gravitational lensing. Applications presented include Jeans length, Eddington luminosity, the cooling of the cosmic microwave background (CMB), the Sunyaev–Zeldovich effect, Doppler boosting in jets, and determinations of the Hubble constant. This text is a stepping stone to more specialized books and primary literature. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521846561.


Radiative Processes in Astrophysics

Radiative Processes in Astrophysics
Author: George B. Rybicki
Publisher: John Wiley & Sons
Total Pages: 400
Release: 2008-09-26
Genre: Science
ISBN: 352761818X

Download Radiative Processes in Astrophysics Book in PDF, ePub and Kindle

Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.


Radiative Processes in High Energy Astrophysics

Radiative Processes in High Energy Astrophysics
Author: Gabriele Ghisellini
Publisher: Springer
Total Pages: 152
Release: 2013-06-03
Genre: Science
ISBN: 3319006126

Download Radiative Processes in High Energy Astrophysics Book in PDF, ePub and Kindle

This book grew out of the author’s notes from his course on Radiative Processes in High Energy Astrophysics. The course provides fundamental definitions of radiative processes and serves as a brief introduction to Bremsstrahlung and black body emission, relativistic beaming, synchrotron emission and absorption, Compton scattering, synchrotron self-compton emission, pair creation and emission. The final chapter discusses the observed features of Active Galactic Nuclei and their interpretation based on the radiative processes presented in the book. Written in an informal style, this book will guide students through their first encounter with high-energy astrophysics.


Astrophysics Processes

Astrophysics Processes
Author: Hale Bradt
Publisher: Cambridge University Press
Total Pages: 0
Release: 2014-05-01
Genre: Science
ISBN: 9781107677241

Download Astrophysics Processes Book in PDF, ePub and Kindle

Bridging the gap between physics and astronomy textbooks, this book provides step-by-step physical and mathematical development of fundamental astrophysical processes underlying a wide range of phenomena in stellar, galactic, and extragalactic astronomy. The book has been written for upper-level undergraduates and beginning graduate students, and its strong pedagogy ensures solid mastery of each process and application. It contains over 150 tutorial figures, numerous examples of astronomical measurements, and 201 exercises. Topics covered include the Kepler-Newton problem, stellar structure, binary evolution, radiation processes, special relativity in astronomy, radio propagation in the interstellar medium, and gravitational lensing. Applications presented include Jeans length, Eddington luminosity, the cooling of the cosmic microwave background (CMB), the Sunyaev-Zeldovich effect, Doppler boosting in jets, and determinations of the Hubble constant. This text is a stepping stone to more specialized books and primary literature. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521846561. For information on Astronomy Methods: A Physical Approach to Astronomical Observations also by Hale Bradt, please click here.


Astronomy Methods

Astronomy Methods
Author: Hale Bradt
Publisher: Cambridge University Press
Total Pages: 462
Release: 2004
Genre: Science
ISBN: 9780521535519

Download Astronomy Methods Book in PDF, ePub and Kindle

Astronomy Methods is an introduction to the basic practical tools, methods and phenomena that underlie quantitative astronomy. Taking a technical approach, the author covers a rich diversity of topics across all branches of astronomy, from radio to gamma-ray wavelengths. Topics include the quantitative aspects of the electromagnetic spectrum, atmospheric and interstellar absorption, telescopes in all wavebands, interferometry, adaptive optics, the transport of radiation through matter to form spectral lines, and neutrino and gravitational-wave astronomy. Clear, systematic presentations of the topics are accompanied by diagrams and problem sets. Written for undergraduates and graduate students, this book contains a wealth of information that is required for the practice and study of quantitative and analytical astronomy and astrophysics.


Exoplanet Atmospheres

Exoplanet Atmospheres
Author: Sara Seager
Publisher: Princeton University Press
Total Pages: 258
Release: 2010-08-02
Genre: Science
ISBN: 1400835305

Download Exoplanet Atmospheres Book in PDF, ePub and Kindle

Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major physical processes that govern all planetary atmospheres. Moving from first principles to cutting-edge research, Exoplanet Atmospheres is an ideal resource for students and researchers in astronomy and earth sciences, one that will help prepare them for the next generation of planetary science. The first textbook to describe exoplanet atmospheres Illustrates concepts using examples grounded in real data Provides a step-by-step guide to understanding the structure and emergent spectrum of a planetary atmosphere Includes exercises for students


Accretion Processes in Star Formation

Accretion Processes in Star Formation
Author: Lee Hartmann
Publisher: Cambridge University Press
Total Pages: 260
Release: 2000-11-15
Genre: Science
ISBN: 9780521785204

Download Accretion Processes in Star Formation Book in PDF, ePub and Kindle

This first comprehensive account of the dynamical processes in the formation of stars and disks from which planets ultimately form.


Self-Organized Criticality in Astrophysics

Self-Organized Criticality in Astrophysics
Author: Markus Aschwanden
Publisher: Springer Science & Business Media
Total Pages: 416
Release: 2011-01-11
Genre: Science
ISBN: 3642150012

Download Self-Organized Criticality in Astrophysics Book in PDF, ePub and Kindle

Markus Aschwanden introduces the concept of self-organized criticality (SOC) and shows that due to its universality and ubiquity it is a law of nature for which he derives the theoretical framework and specific physical models in this book. He begins by providing an overview of the many diverse phenomena in nature which may be attributed to SOC behaviour. The author then introduces the classic lattice-based SOC models that may be explored using numerical computer simulations. These simulations require an in-depth knowledge of a wide range of mathematical techniques which the author introduces and describes in subsequent chapters. These include the statistics of random processes, time series analysis, time scale distributions, and waiting time distributions. Such mathematical techniques are needed to model and understand the power-law-like occurrence frequency distributions of SOC phenomena. Finally, the author discusses fractal geometry and scaling laws before looking at a range of physical SOC models which may be applicable in various aspects of astrophysics. Problems, solutions and a glossary will enhance the pedagogical usefulness of the book. SOC has been receiving growing attention in the astrophysical and solar physics community. This book will be welcomed by students and researchers studying complex critical phenomena.


Stars and Stellar Processes

Stars and Stellar Processes
Author: Mike Guidry
Publisher: Cambridge University Press
Total Pages: 573
Release: 2019-02-07
Genre: Science
ISBN: 1107197880

Download Stars and Stellar Processes Book in PDF, ePub and Kindle

Presents the physics of stars in relation to modern topics such as neutrino oscillations, supernovae, black holes, and gravitational waves.


Transport Processes in Space Physics and Astrophysics

Transport Processes in Space Physics and Astrophysics
Author: Gary P. Zank
Publisher: Springer
Total Pages: 296
Release: 2013-10-19
Genre: Science
ISBN: 1461484804

Download Transport Processes in Space Physics and Astrophysics Book in PDF, ePub and Kindle

“Transport Processes in Space Physics and Astrophysics” is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits researchers in related fields by providing an overview that currently does not exist. For numerous interesting and challenging space physics and astrophysics problems, there is a need to describe the “long-term” behavior of systems governed by macroscopic laws and microscopic randomness. A random event has an outcome that is uncertain and unpredictable, yet the collective behavior of a system can be governed by well defined mathematical and physical principles. Examples of physical problems include the behavior of gases in the presence of microscopic inter-particle collisions, the evolution of a gas of charged protons and electrons (a plasma), the collective propagation of solar energetic particles or cosmic rays in a magnetically turbulent medium, the collective behavior of dust in an accretion disk subject to coagulation and destruction, the evolution of low-frequency magnetic field turbulence in the inhomogeneous solar wind, or the transport of photos in a partially ionized interstellar medium. This book provides graduate students with a unified introduction to the physics of collective phenomena or transport processes for gases (charged and uncharged), fields, and photons in a space physics or astrophysics context.