Applications Of Supervised And Unsupervised Ensemble Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Applications Of Supervised And Unsupervised Ensemble Methods PDF full book. Access full book title Applications Of Supervised And Unsupervised Ensemble Methods.

Applications of Supervised and Unsupervised Ensemble Methods

Applications of Supervised and Unsupervised Ensemble Methods
Author: Oleg Okun
Publisher: Springer
Total Pages: 276
Release: 2009-10-15
Genre: Computers
ISBN: 3642039995

Download Applications of Supervised and Unsupervised Ensemble Methods Book in PDF, ePub and Kindle

Expanding upon presentations at last year’s SUEMA (Supervised and Unsupervised Ensemble Methods and Applications) meeting, this volume explores recent developments in the field. Useful examples act as a guide for practitioners in computational intelligence.


Applications of Supervised and Unsupervised Ensemble Methods

Applications of Supervised and Unsupervised Ensemble Methods
Author: Oleg Okun
Publisher: Springer Science & Business Media
Total Pages: 276
Release: 2009-10-06
Genre: Computers
ISBN: 3642039987

Download Applications of Supervised and Unsupervised Ensemble Methods Book in PDF, ePub and Kindle

Expanding upon presentations at last year’s SUEMA (Supervised and Unsupervised Ensemble Methods and Applications) meeting, this volume explores recent developments in the field. Useful examples act as a guide for practitioners in computational intelligence.


Supervised and Unsupervised Ensemble Methods and their Applications

Supervised and Unsupervised Ensemble Methods and their Applications
Author: Oleg Okun
Publisher: Springer Science & Business Media
Total Pages: 188
Release: 2008-04-18
Genre: Computers
ISBN: 3540789804

Download Supervised and Unsupervised Ensemble Methods and their Applications Book in PDF, ePub and Kindle

This book results from the workshop on Supervised and Unsupervised Ensemble Methods and their Applications (briefly, SUEMA) in June 2007 in Girona, Spain. This workshop was held alongside the 3rd Iberian Conference on Pattern Recognition and Image Analysis.


Supervised and Unsupervised Ensemble Methods and their Applications

Supervised and Unsupervised Ensemble Methods and their Applications
Author: Oleg Okun
Publisher: Springer
Total Pages: 188
Release: 2008-04-20
Genre: Computers
ISBN: 3540789812

Download Supervised and Unsupervised Ensemble Methods and their Applications Book in PDF, ePub and Kindle

This book results from the workshop on Supervised and Unsupervised Ensemble Methods and their Applications (briefly, SUEMA) in June 2007 in Girona, Spain. This workshop was held alongside the 3rd Iberian Conference on Pattern Recognition and Image Analysis.


Ensembles in Machine Learning Applications

Ensembles in Machine Learning Applications
Author: Oleg Okun
Publisher: Springer
Total Pages: 262
Release: 2011-09-01
Genre: Technology & Engineering
ISBN: 3642229107

Download Ensembles in Machine Learning Applications Book in PDF, ePub and Kindle

This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms – advanced machine learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems. This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications.


Ensemble Machine Learning

Ensemble Machine Learning
Author: Cha Zhang
Publisher: Springer Science & Business Media
Total Pages: 332
Release: 2012-02-17
Genre: Computers
ISBN: 1441993258

Download Ensemble Machine Learning Book in PDF, ePub and Kindle

It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.


Ensemble Methods

Ensemble Methods
Author: Zhi-Hua Zhou
Publisher: CRC Press
Total Pages: 238
Release: 2012-06-06
Genre: Business & Economics
ISBN: 1439830037

Download Ensemble Methods Book in PDF, ePub and Kindle

An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity and bias-variance decompositions, and recent progress in information theoretic diversity. Moving on to more advanced topics, the author explains how to achieve better performance through ensemble pruning and how to generate better clustering results by combining multiple clusterings. In addition, he describes developments of ensemble methods in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement.


Recent Advances in Ensembles for Feature Selection

Recent Advances in Ensembles for Feature Selection
Author: Verónica Bolón-Canedo
Publisher: Springer
Total Pages: 212
Release: 2018-04-30
Genre: Technology & Engineering
ISBN: 3319900803

Download Recent Advances in Ensembles for Feature Selection Book in PDF, ePub and Kindle

This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and evaluating ensemble performance. With the advent of Big Data, feature selection (FS) has become more necessary than ever to achieve dimensionality reduction. With so many methods available, it is difficult to choose the most appropriate one for a given setting, thus making the ensemble paradigm an interesting alternative. The authors first focus on the foundations of ensemble learning and classical approaches, before diving into the specific aspects of ensembles for FS, such as combining partial results, measuring diversity and evaluating ensemble performance. Lastly, the book shows examples of successful applications of ensembles for FS and introduces the new challenges that researchers now face. As such, the book offers a valuable guide for all practitioners, researchers and graduate students in the areas of machine learning and data mining.


Advances in Machine Learning and Data Mining for Astronomy

Advances in Machine Learning and Data Mining for Astronomy
Author: Michael J. Way
Publisher: CRC Press
Total Pages: 746
Release: 2012-03-29
Genre: Computers
ISBN: 143984173X

Download Advances in Machine Learning and Data Mining for Astronomy Book in PDF, ePub and Kindle

Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book’s introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.


Design of Interpretable Fuzzy Systems

Design of Interpretable Fuzzy Systems
Author: Krzysztof Cpałka
Publisher: Springer
Total Pages: 203
Release: 2017-01-31
Genre: Technology & Engineering
ISBN: 3319528815

Download Design of Interpretable Fuzzy Systems Book in PDF, ePub and Kindle

This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.