Advances Of Computational Fluid Dynamics In Nuclear Reactor Design And Safety Assessment PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advances Of Computational Fluid Dynamics In Nuclear Reactor Design And Safety Assessment PDF full book. Access full book title Advances Of Computational Fluid Dynamics In Nuclear Reactor Design And Safety Assessment.

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment
Author: Jyeshtharaj Joshi
Publisher: Woodhead Publishing
Total Pages: 888
Release: 2019-06-15
Genre: Science
ISBN: 0081023375

Download Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment Book in PDF, ePub and Kindle

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment presents the latest computational fluid dynamic technologies. It includes an evaluation of safety systems for reactors using CFD and their design, the modeling of Severe Accident Phenomena Using CFD, Model Development for Two-phase Flows, and Applications for Sodium and Molten Salt Reactor Designs. Editors Joshi and Nayak have an invaluable wealth of experience that enables them to comment on the development of CFD models, the technologies currently in practice, and the future of CFD in nuclear reactors. Readers will find a thematic discussion on each aspect of CFD applications for the design and safety assessment of Gen II to Gen IV reactor concepts that will help them develop cost reduction strategies for nuclear power plants. Presents a thematic and comprehensive discussion on each aspect of CFD applications for the design and safety assessment of nuclear reactors Provides an historical review of the development of CFD models, discusses state-of-the-art concepts, and takes an applied and analytic look toward the future Includes CFD tools and simulations to advise and guide the reader through enhancing cost effectiveness, safety and performance optimization


Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment
Author: Jyeshtharaj Joshi
Publisher: Woodhead Publishing
Total Pages: 888
Release: 2019-06-09
Genre: Science
ISBN: 0081023383

Download Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment Book in PDF, ePub and Kindle

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment presents the latest computational fluid dynamic technologies. It includes an evaluation of safety systems for reactors using CFD and their design, the modeling of Severe Accident Phenomena Using CFD, Model Development for Two-phase Flows, and Applications for Sodium and Molten Salt Reactor Designs. Editors Joshi and Nayak have an invaluable wealth of experience that enables them to comment on the development of CFD models, the technologies currently in practice, and the future of CFD in nuclear reactors. Readers will find a thematic discussion on each aspect of CFD applications for the design and safety assessment of Gen II to Gen IV reactor concepts that will help them develop cost reduction strategies for nuclear power plants. Presents a thematic and comprehensive discussion on each aspect of CFD applications for the design and safety assessment of nuclear reactors Provides an historical review of the development of CFD models, discusses state-of-the-art concepts, and takes an applied and analytic look toward the future Includes CFD tools and simulations to advise and guide the reader through enhancing cost effectiveness, safety and performance optimization


Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design

Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design
Author: IAEA
Publisher: International Atomic Energy Agency
Total Pages: 121
Release: 2022-03-28
Genre: Business & Economics
ISBN: 9201004214

Download Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design Book in PDF, ePub and Kindle

This publication documents the results of an IAEA coordinated research project (CRP)on the application of computational fluid dynamics (CFD) codes for nuclear power plant design. The main objective was to benchmark CFD codes, model options and methods against CFD experimental data under single phase flow conditions. This publication summarizes the current capabilities and applications of CFD codes, and their present qualification level, with respect to nuclear power plant design requirements. It is not intended to be comprehensive, focusing instead on international experience in the practical application of these tools in designing nuclear power plant components and systems. The guidance in this publication is based on inputs provided by international nuclear industry experts directly involved in nuclear power plant design issues, CFD applications, and in related experimentation and validation highlighted during the CRP.


Development of an Advanced Computational Fluid Dynamics Technology for the Next-Generation Nuclear Reactor System Analysis and Safety Margin Characterization Code

Development of an Advanced Computational Fluid Dynamics Technology for the Next-Generation Nuclear Reactor System Analysis and Safety Margin Characterization Code
Author:
Publisher:
Total Pages: 14
Release: 2015
Genre:
ISBN:

Download Development of an Advanced Computational Fluid Dynamics Technology for the Next-Generation Nuclear Reactor System Analysis and Safety Margin Characterization Code Book in PDF, ePub and Kindle

This report describes the research activities we have conducted at NCSU for our NEUP project. The work toward achieving the objectives of the project is reported. The significant achievements and accomplishments are presented. A number of numerical experiments are conducted to demonstrate that the goal of the proposed work has been successfully achieved. Issues, recommendations, and future work are discussed.


Computational Fluid-Structure Interaction for Nuclear Reactor Applications

Computational Fluid-Structure Interaction for Nuclear Reactor Applications
Author: Afaque Shams
Publisher: Woodhead Publishing
Total Pages: 300
Release: 2022-06-15
Genre: Technology & Engineering
ISBN: 9780128228098

Download Computational Fluid-Structure Interaction for Nuclear Reactor Applications Book in PDF, ePub and Kindle

Computational Fluid-Structure Interaction for Nuclear Reactor Applications presents the latest knowledge on the use of Computational Fluid Dynamics (CFD) and Computational Structural Dynamic (CSM) tools to solve Fluid-Structure Interaction (FSI) problems in a nuclear setting. Editor Dr Afaque Shams and his team of expert contributors from around the globe provide a detailed background on the topic as well as a comprehensive picture of recent developments of computational FSI in a variety of nuclear reactors. Mechanical damages which threaten the integrity and safety of nuclear plants need to be mitigated at the design stage, and this book provides a clear understanding of FSI issues such as vibration, noise, wear and fatigue which will work to reduce accident vulnerabilities in the long run. Numerical algorithms, modelling and applications, validation and verification approaches are included to equip nuclear professionals, plant designers and analysists, and researchers with a solid understanding of the state-of-the-art approaches for FSI and its advanced applications and modern approaches. Includes numerical methods, modelling, validation and verification of all approaches presented Provides best practice guidelines to perform FSI simulations for various nuclear reactor applications Reviews the present status of tools to perform FSI computations and provides future perspectives for further research opportunities


Scaling, Experiments, and Simulations of Condensation Heat Transfer for Advanced Nuclear Reactors Safety

Scaling, Experiments, and Simulations of Condensation Heat Transfer for Advanced Nuclear Reactors Safety
Author: Palash Kumar Bhowmik
Publisher:
Total Pages: 199
Release: 2021
Genre:
ISBN:

Download Scaling, Experiments, and Simulations of Condensation Heat Transfer for Advanced Nuclear Reactors Safety Book in PDF, ePub and Kindle

"The purpose of this research was to perform scaled experiments and simulations to validate computational fluid dynamics (CFD) and empirical models of condensation heat transfer (CHT) for the passive containment cooling system (PCCS) of Small Modular Reactors (SMRs). SMRs are the futuristic candidates for clean, economic, and safe energy generation; however, reactor licensing requires safety system evaluations, such as PCCS. The knowledge in the reviewed relevant literature showed a gap in experimental data for scaling SMR's safety systems and validating computational models. The previously available test data were inconsistent due to unscaled geometric and varying physics conditions. These inconsistencies lead to inadequate test data benchmarking. This study developed three scaled (different diameters) test sections with annular cooling for scale testing and analysis to fill this research gap. First, tests were performed for pure steam and steam with non-condensable gases (NCGs), like nitrogen and helium, at different mass fractions, inlet mass flow rates, and pressure ranges. Second, detailed CFD simulations and validations were performed using STAR-CCM+ software with scaled geometries and experimental parameters (e.g., flow rate, pressure, and steam-NCG mixtures), thus mimicking reactor accident cases. The multi-component gases, multiphase mixtures, and fluid film condensation models were applied, verified, and optimized in the CFD simulations with associated turbulence models. Third, the physics-based and data-driven condensation models and empirical correlations were assessed to quantify the scaling distortions. Finally, the experiments, simulations, and modeling results were evaluated for critical insights into the physics conditions, scaling effects, and multi-component gas mixture parameters. This study supported improvements to nuclear reactor safety systems' modeling capabilities irrespective of size (small or big), and findings were equally applicable to other non-nuclear energy applications"--Abstract, page iii.


Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis

Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis
Author: Richard W. Johnson
Publisher:
Total Pages:
Release: 2006
Genre:
ISBN:

Download Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis Book in PDF, ePub and Kindle

Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local 'hot spots' do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on 'first principles.' Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate estimates of the flow and energy transport as applied to nuclear reactor safety. However, it is expected that these practices and procedures will require updating from time to time as research and development affect them or replace them with better procedures. The practices and procedures are categorized into five groups. These are:1. Code Verification2. Code and Calculation Documentation3. Reduction of Numerical Error4. Quantification of Numerical Uncertainty (Calculation Verification)5. Calculation Validation. These five categories have been identified from procedures currently required of CFD simulations such as those required for publication of a paper in the ASME Journal of Fluids Engineering and from the literature such as Roache [1998]. Code verification refers to the demonstration that the equations of fluid and energy transport have been correctly coded in the CFD code. Code and calculation documentation simply means that the equations and their discretizations, etc., and boundary and initial conditions used to pose the fluid flow problem are fully described in available documentation. Reduction of numerical error refers to practices and procedures to lower numerical errors to negligible or very low levels as is reasonably possible (such as avoiding use of first-order discretizations). The quantification of numerical uncertainty is also known as calculation verification. This means that estimates are made of numerical error to allow the characterization of the numerical.


Use of Computational Fluid Dynamics Codes for Safety Analysis of Nuclear Reactor Systems

Use of Computational Fluid Dynamics Codes for Safety Analysis of Nuclear Reactor Systems
Author:
Publisher:
Total Pages: 66
Release: 2003
Genre: Abstracts
ISBN:

Download Use of Computational Fluid Dynamics Codes for Safety Analysis of Nuclear Reactor Systems Book in PDF, ePub and Kindle

Presets the report of the joint IAEA and OECD/NEA technical meeting on the Use of CFD Codes for Safety Analysis of Reactor Systems, including Containment, held in November 2002. It includes summaries of the presentations and of the discussions as well as conclusions and recommendations for further work.


Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors

Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
Author: Ferry Roelofs
Publisher: Woodhead Publishing
Total Pages: 464
Release: 2018-11-30
Genre: Science
ISBN: 0081019815

Download Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors Book in PDF, ePub and Kindle

Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. Presents the latest information on one of the deliverables of the SESAME H2020 project Provides an overview on the design and history of liquid metal cooled fast reactors worldwide Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications