Accelerator Driven Subcritical Reactors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Accelerator Driven Subcritical Reactors PDF full book. Access full book title Accelerator Driven Subcritical Reactors.

Accelerator Driven Subcritical Reactors

Accelerator Driven Subcritical Reactors
Author: H Nifenecker
Publisher: CRC Press
Total Pages: 324
Release: 2003-06-01
Genre: Science
ISBN: 1420034731

Download Accelerator Driven Subcritical Reactors Book in PDF, ePub and Kindle

This book describes the basic knowledge in nuclear, neutron, and reactor physics necessary for understanding the principle and implementation of accelerator driven subcritical nuclear reactors (ADSRs), also known as hybrid reactors. Since hybrid reactors may contribute to future nuclear energy production, the book begins with a discussion of


High Power Ring Methods and Accelerator Driven Subcritical Reactor Application

High Power Ring Methods and Accelerator Driven Subcritical Reactor Application
Author: Malek Haj Tahar
Publisher:
Total Pages: 0
Release: 2017
Genre:
ISBN:

Download High Power Ring Methods and Accelerator Driven Subcritical Reactor Application Book in PDF, ePub and Kindle

High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in thesynthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept ofsub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective ofachieving cleaner, safer and more efficient process than today's technologies allow.Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime,MW power class still remains a challenge nowadays. There is a limited number of installations at presentachieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS inOakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MWbeam from a linear accelerator.Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some ofthe key issues/requirements are the design of a spallation target to withstand high power densities as well asensure the safety of the installation.These two domains are the grounds of the PhD work: the focus is on the high power ring methods inthe frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensityis crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamicsand benchmarking of different codes was undertaken to validate the simulation results. Experimental resultsrevealed some major losses that need to be understood and eventually overcome.By developing analytical models that account for the field defects, one identified major sources of imperfectionin the design of scaling FFAG that explain the important tune variations resulting in the crossing of severalbetatron resonances. A new formula is derived to compute the tunes and properties established that characterizethe effect of the field imperfections on the transverse beam dynamics. The results obtained allow to developa correction scheme to minimize the tune variations of the FFAG. This is the cornerstone of a new fixed tunenon-scaling FFAG that represents a potential candidate for high power applications.As part of the developments towards high power at the KURRI FFAG, beam dynamics studies have toaccount for space charge effects. In that framework, models have been installed in the tracking code ZGOUBIto account for the self-interaction of the particles in the accelerator. Application to the FFAG studies is shown.Finally, one focused on the ADSR concept as a candidate to solve the problem of nuclear waste. In orderto establish the accelerator requirements, one compared the performance of ADSR with other conventionalcritical reactors by means of the levelized cost of energy. A general comparison between the different acceleratortechnologies that can satisfy these requirements is finally presented.In summary, the main drawback of the ADSR technology is the high Levelized Cost Of Energy comparedto other advanced reactor concepts that do not employ an accelerator. Nowadays, this is a show-stopper forany industrial application aiming at producing energy (without dealing with the waste problem). Besides, thereactor is not intrinsically safer than critical reactor concepts, given the complexity of managing the targetinterface between the accelerator and the reactor core.


High Power Ring Methods and Accelerator Driven Subcritical Reactor Application

High Power Ring Methods and Accelerator Driven Subcritical Reactor Application
Author:
Publisher:
Total Pages: 158
Release: 2016
Genre:
ISBN:

Download High Power Ring Methods and Accelerator Driven Subcritical Reactor Application Book in PDF, ePub and Kindle

High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today's technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the transverse beam dynamics. The results obtained allow to develop a correction scheme to minimize the tune variations of the FFAG. This is the cornerstone of a new fixed tune non-scaling FFAG that represents a potential candidate for high power applications. As part of the developments towards high power at the KURRI FFAG, beam dynamics studies have to account for space charge effects. In that framework, models have been installed in the tracking code ZGOUBI to account for the self-interaction of the particles in the accelerator. Application to the FFAG studies is shown. Finally, one focused on the ADSR concept as a candidate to solve the problem of nuclear waste. In order to establish the accelerator requirements, one compared the performance of ADSR with other conventional critical reactors by means of the levelized cost of energy. A general comparison between the different accelerator technologies that can satisfy these requirements is finally presented. In summary, the main drawback of the ADSR technology is the high Levelized Cost Of Energy compared to other advanced reactor concepts that do not employ an accelerator. Nowadays, this is a show-stopper for any industrial application aiming at producing energy (without dealing with the waste problem). Besides, the reactor is not intrinsically safer than critical reactor concepts, given the complexity of managing the target interface between the accelerator and the reactor core.


Accelerators for Subcritical Molten-Salt Reactors

Accelerators for Subcritical Molten-Salt Reactors
Author:
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Accelerators for Subcritical Molten-Salt Reactors Book in PDF, ePub and Kindle

Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.


Active and Passive Safety Control Performance in Sub - Critical, Accelerator - Driven Nuclear Reactors

Active and Passive Safety Control Performance in Sub - Critical, Accelerator - Driven Nuclear Reactors
Author:
Publisher:
Total Pages: 23
Release: 2002
Genre:
ISBN:

Download Active and Passive Safety Control Performance in Sub - Critical, Accelerator - Driven Nuclear Reactors Book in PDF, ePub and Kindle

Traditional safety performance requirements for nuclear reactors have been developed for critical reactors, whose kinetics characteristics differ significantly from sub-critical, accelerator-driven nuclear reactors. In a critical nuclear reactor, relatively small amounts of reactivity (negative or positive) can produce large changes in the fission rate. In sub-critical reactors, the self-multiplication (k) decreases as the sub-criticality (1-k) increases, and the responsiveness to small reactivity changes decreases. This makes sub-critical nuclear reactors less responsive to positive reactivity insertions than critical reactors. Also, larger negative reactivity insertions are needed in sub-critical reactors to shut down the fission chain if the neutron source remains. This paper presents the results from a computational analysis of the safety performance of sub-critical, accelerator-driven nuclear reactors. Coupled kinetics and thermal-hydraulics models are used to quantify the effectiveness of traditional protection and control system designs in sub-critical reactors. The analyses also quantify the role of inherent, passive reactivity feedback mechanisms in sub-critical reactors. Computational results are used to develop conclusions regarding the most favorable and effective means for reactor control and protection in sub-critical, accelerator-driven nuclear reactors.


Megawatts and Megatons

Megawatts and Megatons
Author: Richard L. Garwin
Publisher: University of Chicago Press
Total Pages: 436
Release: 2002-12-15
Genre: Business & Economics
ISBN: 9780226284279

Download Megawatts and Megatons Book in PDF, ePub and Kindle

In Megawatts and Megatons, world-renowned physicists Richard L. Garwin and Georges Charpak offer an accessible, eminently well-informed primer on two of the most important issues of our time: nuclear weapons and nuclear power. They begin by explaining clearly and concisely how nuclear fission and fusion work in both warheads and reactors, and how they can impact human health. Making a strong and eloquent argument in favor of arms control, Garwin and Charpak outline specific strategies for achieving this goal worldwide. But they also demonstrate how nuclear power can provide an assured, economically feasible, and environmentally responsible source of energy—in a way that avoids the hazards of weapons proliferation. Numerous figures enliven the text, including cartoons by Sempé.


Preliminary Report on the Promise of Accelerator-driven Natural-uranium-fueled Light-water-moderated Breeding Power Reactors

Preliminary Report on the Promise of Accelerator-driven Natural-uranium-fueled Light-water-moderated Breeding Power Reactors
Author:
Publisher:
Total Pages:
Release: 1977
Genre:
ISBN:

Download Preliminary Report on the Promise of Accelerator-driven Natural-uranium-fueled Light-water-moderated Breeding Power Reactors Book in PDF, ePub and Kindle

A new concept for a power breeder reactor that consists of an accelerator-driven subcritical thermal fission system is proposed. In this system an accelerator provides a high-energy proton beam which interacts with a heavy-element target to produce, via spallation reactions, an intense source of neutrons. This source then drives a natural-uranium-fueled, light-water-moderated and -cooled subcritical blanket which both breeds new fuel and generates heat that can be converted to electrical power. The report given presents a general layout of the resulting Accelerator Driven Light Water Reactor (ADLWR), evaluates its performance, discusses its fuel cycle characteristics, and identifies the potential contributions to the nuclear energy economy this type of power reactor might make. A light-water thermal fission system is found to provide an attractive feature when designed to be source-driven. The equilibrium fissile fuel content that gives the highest energy multiplication is approximately equal to the content of 235U in natural uranium. Consequently, natural-uranium-fueled ADLWRs that are designed to have the highest energy generation per source neutron are also fuel-self-sufficient; that is, their fissile fuel content remains constant with burnup. This feature allows the development of a nuclear energy system that is based on the most highly developed fission technology available (the light water reactor technology) and yet has a simple and safe fuel cycle. ADLWRs will breed on natural uranium, have no doubling time limitation, and be free from the need for uranium enrichment or for the separation of plutonium. It appears that ADLWRs could also be efficiently operated with thorium fuel cycles and with denatured fuel cycles.


Accelerator Driven Nuclear Energy

Accelerator Driven Nuclear Energy
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download Accelerator Driven Nuclear Energy Book in PDF, ePub and Kindle

Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.


Status of Accelerator Driven Systems Research and Technology Development

Status of Accelerator Driven Systems Research and Technology Development
Author: International Atomic Energy Agency
Publisher: IAEA Tecdoc
Total Pages: 0
Release: 2015
Genre: Science
ISBN: 9789201053152

Download Status of Accelerator Driven Systems Research and Technology Development Book in PDF, ePub and Kindle

One of the greatest challenges for nuclear energy is how to properly manage the highly radioactive waste generated during irradiation in nuclear reactors. Accelerator Driven Systems (ADSs) may offer new prospects and advantages for the transmutation of such high level nuclear waste. ADS or accelerator driven transmutation of waste (ATW) consists of a high power proton accelerator, a heavy metal spallation target that produces neutrons when bombarded by the high power beam, and a sub-critical core that is neutronically coupled to the spallation target. This publication provides a comprehensive state of the art of the ADS technology by representing the different ADS concepts proposed worldwide in the last 15 years, as well as the related R&D activities and demonstration initiatives carried out at national international level.